Purpose: The purpose of this study was to modify and functionalize the surface of synthetic poly-ε-caprolactone (PCL) nanofibrous scaffolds to improve their biocompatibility in order to provide better "cell-substrate" interaction.

Methods: Poly-ε-caprolactone solution was electrospun and its surface functionality was modified by helium-oxygen (He/O2) plasma discharge. Scaffolds were characterized for their morphology, wetting ability, mechanical strength, and optical properties by using scanning electron microscopy (SEM), water contact angle measurement, tensile strength, and ultraviolet-visible (UV-Vis) spectrophotometer, respectively. The biocompatibility of nanofibers was explored by culturing human corneal epithelial (HCE-T) cell line. Subsequently, human limbal epithelial cells (LECs) were cultured to evaluate the bioactivity. Cell proliferation was checked by MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Immunofluorescent staining and reverse transcription-polymerase chain reaction were done to check the gene expression; SEM was used to study the morphology.

Results: Plasma-treated and untreated scaffolds showed almost similar morphology and tensile strength. Water contact angle measurement and optical transparency data showed that the plasma-treated PCL (pPCL) exhibited significantly improved wettability and transparency as compared to the untreated PCL scaffolds. Biocompatibility results indicated that both scaffolds are biocompatible in terms of cell survival and proliferation. However, pPCL showed better cell adhesion and proliferation. Results supported that LEC cultured on pPCL scaffolds had enhanced cell adhesion and proliferation, in comparison to untreated PCL. Gene expression study showed cultures were able to retain their normal phenotype on both scaffolds.

Conclusions: The hydrophilicity of the surface achieved by plasma treatment effectively enhanced the transparency and promoted the biocompatibility of scaffolds. These nanofibers may act as biological cues for endorsing ocular surface engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.13-12727DOI Listing

Publication Analysis

Top Keywords

optical transparency
8
ocular surface
8
water contact
8
contact angle
8
angle measurement
8
tensile strength
8
gene expression
8
untreated pcl
8
cell adhesion
8
adhesion proliferation
8

Similar Publications

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Low- and middle-income countries (LMICs) are increasingly challenged by the rising burden of medicolegal cases. Traditional forensic infrastructure and in vivo rodent models often have significant limitations due to high costs and ethical concerns. As a result, zebrafish () are gaining popularity as an attractive alternative model for LMICs because of their cost-effectiveness and practical advantages.

View Article and Find Full Text PDF

A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides.

Luminescence

January 2025

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices.

View Article and Find Full Text PDF

Eu-Gd co-doped glasses composed of 15BO-12SiO-(40-x)TeO-3EuO-xGdO-12BiO-8BaO-10ZnO with x = 0-4 mol% (coded as EuGd-x) were fabricated using melt quench approach to develop transparent radiation shielding system. Their structural, optical and mechanical properties were examined. 5.

View Article and Find Full Text PDF

Hazy transparent cellulose nanocrystal-based films with tunable structural colors.

Carbohydr Polym

March 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Cellulose nanocrystals (CNCs) are powerful biosourced nanomaterials for the construction of chiral photonic films. While various techniques have been used to enrich the optical properties of such systems, surface roughness engineering has yet to be exploited to significantly modify their optical properties. In this work, by using vacuum filtration-assisted self-assembly, CNCs are densely packed into films with high optical transparency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!