Light plays a major role in many physiological processes in cyanobacteria. In Calothrix sp. PCC 7601, these include the biosynthesis of the components of the light-harvesting antenna (phycobilisomes) and the differentiation of the vegetative trichomes into hormogonia (short chains of smaller cells). In order to study the molecular basis for the photoregulation of gene expression, physiological studies have been coupled with the characterization of genes involved either in the formation of phycobilisomes or in the synthesis of gas vesicles, which are only present at the hormogonial stage.In each system, a number of genes have been isolated and sequenced. This demonstrated the existence of multigene families, as well as of gene products which have not yet been identified biochemically. Further studies have also established the occurrence of both transcriptional and post-transcriptional regulation. The transcription of genes encoding components of the phycobilisome rods is light-wavelength dependent, while translation of the phycocyanin genes may require the synthesis of another gene product irrespective of the light regime. In this report, we propose two hypothetical models which might be part of the complex regulatory mechanisms involved in the formation of functional phycobilisomes. On the other hand, transcription of genes involved in the gas vesicles formation (gvp genes) is turned on during hormogonia differentiation, while that of phycobiliprotein genes is simultaneously turned off. In addition, and antisense RNA which might modulate the translation of the gvp mRNAs is synthezised.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00042981 | DOI Listing |
Int J Mol Sci
November 2024
Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia.
The design of controllable and precise RNA-targeted CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) systems is an important problem of modern molecular biology and genetic technology. Herein, we have designed a series of photocleavable guide CRISPR RNAs (crRNA) and their 2'-modified (2'-fluoro and locked nucleic acid) analogs containing one or two 1-(2-nitrophenyl)-1,2-ethanediol photolabile linkers (PL). We have demonstrated that these crRNAs can be destroyed by relatively mild UVA irradiation with the rate constants 0.
View Article and Find Full Text PDFJ Plant Res
November 2024
Department of Biosciences, Plant Molecular and Cellular Biology Laboratory, Faculty of Science and Engineering School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan.
The green alga Pediastrum duplex forms colonies through asexual reproduction and has a unique life cycle. To elucidate the mechanisms that regulate the asexual reproductive cycle in P. duplex, we analyzed the effects of light on the processes and gene expression involved in each step of the asexual reproductive cycle, revealing light irradiation to be essential for increasing the number of colonies.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2024
Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Yokohama, Kanagawa 230-0045, Japan; Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa 210-9501, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University, 1-1-1 Tsushimanaka, Kita, Okayama 700-8530, Japan. Electronic address:
PROTACs (Proteolysis targeting chimeras) are chimeric molecules designed to induce targeted protein degradation via the ubiquitin-proteasome system. These molecules catalytically degrade target proteins and sustainably inhibit their function. Therefore, PROTAC's unique mechanism of action is not only beneficial in medicine but also serves as a valuable tool for molecular biological analysis in fields like chemical biology, biochemistry, and drug discovery.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China.
DNAzymes exhibit tremendous application potentials in the field of biosensing and gene regulation due to its unique catalytic function. However, spatiotemporally controlled regulation of DNAzyme activity remains a daunting challenge, which may cause nonspecific signal leakage or gene silencing of the catalytic systems. Here, we report a photochemical approach via modular weaving active DNAzyme into the skeleton of tetrahedral DNA nanocages (TDN) for light-triggered on-demand liberation of DNAzyme and thus conditional control of gene regulation activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
Coenzyme B (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!