Beam quality correction kQQo (r), which reflects the absorbed energy dependence of the detector, is calculated for solid state detector materials diamond, LiF, Li2B4O7 and Al2O3 for the 137Cs RTR brachytherapy source using the Monte Carlo-based EGSnrc code system. The study also includes calculation of detector-specific phantom scatter corrections kphant (r) for solid phantoms such as PMMA, polystyrene, RW1, solid water, virtual water and plastic water. Above corrections are calculated as a function of distance r along the transverse axis of the source. kQQo (r) is about unity for the Li2B4O7 detector. LiF detector shows a gradual decrease in kQQo (r) with r (decrease is about 2% over the distance range of 1 - 15 cm). Diamond detector shows a gradual increase in kQQo (r)with r (about 3% larger than unity at 15 cm). In the case of Al2O3 detector, kQQo (r)decreases with r steeply (about 14% over the distance range of 1 - 15 cm). The study shows that some solid state detectors demonstrate distance-dependent kphant (r)values, but the degree deviation from unity depends on the type of solid phantom and the detector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711252PMC
http://dx.doi.org/10.1120/jacmp.v15i1.4445DOI Listing

Publication Analysis

Top Keywords

beam quality
8
quality correction
8
phantom scatter
8
solid state
8
detector gradual
8
distance range
8
detector
7
kqqo
5
solid
5
monte carlo
4

Similar Publications

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

The complex cross-sectional shape of oversized beam blanks and the size effect of ultra-large-section beam blanks create severe issues related to the surface and internal quality of the castings. To ensure quality and control in the production of ultra-large-section beam blanks, a numerical and physical model of molten steel flow in the three-port submerged entrance nozzle (SEN) mould, with section dimensions of 1300 × 510 × 140 mm, was established. This model was created using numerical simulations and NSGA-II genetic algorithm optimisation, and the impact of the casting speed and SEN immersion depth on the mould's flow behaviour was investigated.

View Article and Find Full Text PDF

Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.

View Article and Find Full Text PDF

In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.

View Article and Find Full Text PDF

Background: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.

Purpose: To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!