Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this work is to evaluate dosimetric impact of multilumen balloon applicator rotation in high-dose-rate (HDR) brachytherapy for breast cancer. Highly asymmetrical dose distribution was generated for patients A and B, depending upon applicator proximity to skin and rib. Both skin and rib spacing was ≤ 0.7 cm for A; only rib spacing was ≤ 0.7 cm for B. Thirty-five rotation scenarios were simulated for each patient by rotating outer lumens every 10° over ± 180° range with respect to central lumen using mathematically calculated rotational matrix. Thirty-five rotated plans were compared with three plans: 1) original multidwell multilumen (MDML) plan, 2) multidwell single-lumen (MDSL) plan, and 3) single-dwell single-lumen (SDSL) plan. For plan comparison, planning target volume for evaluation (PTV_EVAL) coverage (dose to 95% and 90% volume of PTV_EVAL) (D95 and D90), skin and rib maximal dose (Dmax), and normal breast tissue volume receiving 150% (V150) and 200% (V200) of prescribed dose (PD) were evaluated. Dose variation due to device rotation ranged from -5.6% to 0.8% (A) and -6.5% to 0.2% (B) for PTV_EVAL D95; -5.2% to 0.4% (A) and -4.1% to 0.7% (B) for PTV_EVAL D90; -2.0 to 18.4% (A) and -7.8 to 17.5% (B) for skin Dmax; -11.1 to 22.8% (A) and -4.7 to 55.1% (B) of PD for rib Dmax, respectively. Normal breast tissue V150 and V200 variation was < 1.0 cc, except for -0.1 to 2.5cc (B) of V200. Furthermore, 30° device rotation increased rib Dmax over 145% of PD: 152.9% (A) by clockwise 30° rotation and 152.5% (B) by counterclockwise 30° rotation. For a highly asymmetric dose distribution, device rotation can outweigh the potential benefit of improved dose shaping capability afforded by multilumen and make dosimetric data worse than single-lumen plans unless it is properly corrected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711249 | PMC |
http://dx.doi.org/10.1120/jacmp.v15i1.4429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!