To selectively target tumor cells expressing an overactive Polyamine Transport System (PTS), we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, derived from the lead compound HQ1-44, which we named Quilamines II. The structures of four new antiproliferative agents were developed. They differ in the size of the linker (HQ0-44 and HQ2-44) or in the nature of the linker (HQCO-44 and HQCS-44) between a hydroxyquinoline moiety (HQ) and a homospermidine (44) chain, the best polyamine vector. The Quilamines II were obtained after 6 to 9 steps by Michael addition, peptide linkage, and reductive amination or by using the Willgerodt-Kindler reaction. The biological evaluation of these second-generation Quilamines showed that modifying the size of the linker increased the selectivity of these compounds for the PTS. In addition, measurement of the toxicity of Quilamines HQ0-44 and HQ2-44 highlighted their marked antiproliferative nature on several cancerous cell lines as well as a differential activity on nontransformed cells (fibroblasts). In contrast, Quilamines HQCO-44 and HQCS-44 presented low selectivity for the PTS, probably due to a loss of electrostatic interaction. We also demonstrated that the HCT116 cell line, originating from a human colon adenocarcinoma, was the most responsive to the various Quilamines. As deduced from the calcein and HVA assays, the higher iron chelating capacity of HQ1-44 could explain its higher antiproliferative efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc4004734 | DOI Listing |
Front Parasitol
February 2024
Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States.
An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFZhonghua Xin Xue Guan Bing Za Zhi
January 2025
Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou215031, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!