Realist explanatory theory building method for social epidemiology: a protocol for a mixed method multilevel study of neighbourhood context and postnatal depression.

Springerplus

South Western Sydney Local Health District, Locked Mail Bag 7279, Liverpool BC 1871, Sydney, NSW Australia ; School of Public Health and Community Medicine, The University of New South Wales, Sydney, NSW 2052 Australia.

Published: January 2014

A recent criticism of social epidemiological studies, and multi-level studies in particular has been a paucity of theory. We will present here the protocol for a study that aims to build a theory of the social epidemiology of maternal depression. We use a critical realist approach which is trans-disciplinary, encompassing both quantitative and qualitative traditions, and that assumes both ontological and hierarchical stratification of reality. We describe a critical realist Explanatory Theory Building Method comprising of an: 1) emergent phase, 2) construction phase, and 3) confirmatory phase. A concurrent triangulated mixed method multilevel cross-sectional study design is described. The Emergent Phase uses: interviews, focus groups, exploratory data analysis, exploratory factor analysis, regression, and multilevel Bayesian spatial data analysis to detect and describe phenomena. Abductive and retroductive reasoning will be applied to: categorical principal component analysis, exploratory factor analysis, regression, coding of concepts and categories, constant comparative analysis, drawing of conceptual networks, and situational analysis to generate theoretical concepts. The Theory Construction Phase will include: 1) defining stratified levels; 2) analytic resolution; 3) abductive reasoning; 4) comparative analysis (triangulation); 5) retroduction; 6) postulate and proposition development; 7) comparison and assessment of theories; and 8) conceptual frameworks and model development. The strength of the critical realist methodology described is the extent to which this paradigm is able to support the epistemological, ontological, axiological, methodological and rhetorical positions of both quantitative and qualitative research in the field of social epidemiology. The extensive multilevel Bayesian studies, intensive qualitative studies, latent variable theory, abductive triangulation, and Inference to Best Explanation provide a strong foundation for Theory Construction. The study will contribute to defining the role that realism and mixed methods can play in explaining the social determinants and developmental origins of health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888492PMC
http://dx.doi.org/10.1186/2193-1801-3-12DOI Listing

Publication Analysis

Top Keywords

social epidemiology
12
critical realist
12
realist explanatory
8
explanatory theory
8
theory building
8
building method
8
mixed method
8
method multilevel
8
quantitative qualitative
8
emergent phase
8

Similar Publications

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Pneumococcal infections are a serious health issue associated with increased morbidity and mortality. This systematic review evaluated the efficacy, effectiveness, immunogenicity, and safety of the pneumococcal conjugate vaccine (PCV)15 compared to other pneumococcal vaccines or no vaccination in children and adults. We identified 20 randomized controlled trials (RCTs).

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the value of deep learning on CT imaging of metastatic lesions for predicting ICI treatment outcomes in advanced melanoma.

View Article and Find Full Text PDF

A real-world pharmacovigilance analysis of potential ototoxicity associated with sacubitril/valsartan based on FDA Adverse Event Reporting System (FAERS).

Sci Rep

December 2024

Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, is widely used to treat heart failure. Despite its efficacy, sacubitril/valsartan inevitably causes adverse events such as hypotension, renal dysfunction, hyperkalemia, and angioedema. Sacubitril/valsartan-associated ototoxicity is often underreported in clinical studies and real-world settings.

View Article and Find Full Text PDF

This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!