A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Animal models to study the mutational landscape for oral cavity and oropharyngeal cancers. | LitMetric

Objectives: Cancer is likely caused by alterations in gene structure or expression. Recently, next generation sequencing has documented mutations in 106 head and neck squamous cell cancer genomes, suggesting several new candidate genes. However, it remains difficult to determine which mutations directly contributed to cancer. Here, summarize the animal models which have already validated and may test cancer causing mutations identified by next generation sequencing approaches.

Material And Methods: We reviewed the existing literature on genetically engineered mouse models and next generation sequencing (NGS), as it relates to animal models of squamous cell cancers of the head and neck (HNSCC) in PubMed.

Results: NSG has identified an average of 19 to 130 distinct mutations per HNSCC specimen. While many mutations likely had biological significance, it remains unclear which mutations were essential to, or "drive," carcinogenesis. In contrast, "passenger" mutations also exist that provide no selection advantage. The genes identified by NGS included p53, RAS, Human Papillomavirus oncogenes, as well as novel genes such as NOTCH1, DICER and SYNE1,2. Animal models of HNSCC have already validated some of these common gene mutations identified by NGS.

Conclusions: The advent of next generation sequencing will provide new leads to the genetic changes occurring in squamous cell cancers of the head and neck. Animal models will enable us to validate these new leads in order to better elucidate the biology of squamous cell cancers of the head and neck.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886108PMC
http://dx.doi.org/10.5037/jomr.2013.4101DOI Listing

Publication Analysis

Top Keywords

animal models
20
generation sequencing
16
head neck
16
squamous cell
16
cell cancers
12
cancers head
12
mutations
8
mutations identified
8
animal
5
models
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!