A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin. | LitMetric

In vitro Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin.

J Oral Maxillofac Res

Department of Prosthodontics, Faculty of Odontology, Malmö University Malmö Sweden. ; Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden.

Published: January 2014

Objectives: The aim of the present study was to evaluate calcium phosphate precipitation and the amount of precipitated protein on three potentially bioactive surfaces when adding laminin in simulated body fluid.

Material And Methods: BLASTED TITANIUM DISCS WERE PREPARED BY THREE DIFFERENT TECHNIQUES CLAIMED TO PROVIDE BIOACTIVITY: alkali and heat treatment (AH), anodic oxidation (AO) or hydroxyapatite coating (HA). A blasted surface incubated in laminin-containing simulated body fuid served as a positive control (B) while a blasted surface incubated in non laminin-containing simulated body fuid served as a negative control (B-). The immersion time was 1 hour, 24 hours, 72 hours and 1 week. Surface topography was investigated by interferometry and morphology by Scanning Electron Microscopy (SEM). Analysis of the precipitated calcium and phosphorous was performed by Energy Dispersive X-ray Spectroscopy (EDX) and the adsorbed laminin was quantified by iodine ((125)I) labeling.

Results: SEM demonstrated that all specimens except for the negative control were totally covered with calcium phosphate (CaP) after 1 week. EDX revealed that B- demonstrated lower sum of Ca and P levels compared to the other groups after 1 week. Iodine labeling demonstrated that laminin precipitated in a similar manner on the possibly bioactive surfaces as on the positive control surface.

Conclusions: Our results indicate that laminin precipitates equally on all tested titanium surfaces and may function as a nucleation center thus locally elevating the calcium concentration. Nevertheless further studies are required to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886075PMC
http://dx.doi.org/10.5037/jomr.2011.2303DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
simulated body
12
phosphate precipitation
8
titanium surfaces
8
bioactive surfaces
8
blasted surface
8
surface incubated
8
incubated laminin-containing
8
laminin-containing simulated
8
body fuid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!