Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885438 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082996 | PLOS |
Glob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFEnviron Entomol
January 2025
Department of Entomology, University of Georgia, Tifton, GA, USA.
Wild bee communities are the target of various conservation and ecological restoration programs. Strategic conservation can influence bee communities visiting fields and help mitigate pollinator limitations in fruit production. However, planning compatible conservation strategies and gauging their effectiveness requires understanding how local communities vary across space and time in crops and adjacent semi-natural areas.
View Article and Find Full Text PDFUrbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.
View Article and Find Full Text PDFSci Total Environ
January 2025
Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA. Electronic address:
Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!