Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion.

J Cell Physiol

Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

Published: September 2014

Transcriptional repressor activating transcription factor 3 (ATF3) is induced by various stress stimuli, including inflammation-induced renal injury. In addition, ATF3 also down-regulates adhesion molecules like intercellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and monocyte chemotactic protein-1 (MCP-1). However, the relation between up-regulated ATF3 after renal ischemia/reperfusion (I/R) injury and MCP-1 is not completely understood. In this study, we demonstrated that, in renal I/R induced inflammation, induction of adhesion molecules (interleukin-6, P-selectin, E-selectin, ICAM, VCAM, and MCP-1) was higher in ATF3-knockout mice than in wild-type animals. Molecular and biochemical analyses revealed that ATF3 binds to the ATF/CRE sites in the MCP-1 promoter and inhibits the secretion of MCP-1 from renal epithelial cells after I/R injury. Urinary exosome containing ATF3 RNA was 60-fold higher in patients with acute kidney injury than in normal controls, but no difference in total urinary ATF3 RNA levels was found. In addition, in vitro study showed that exosome containing ATF3 RNA derived from epithelial cells also inhibits MCP-1 expression in the epithelial cells and macrophage migration. Furthermore, direct administration of the epithelium-derived exosomal ATF3 RNA attenuates I/R induced kidney injury. Together, our studies reveal a novel regulatory mechanism of MCP-1 expression mediated by the exosomal ATF3 RNA under renal I/R insult and suggest a potential targeted therapy for I/R induced acute kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24554DOI Listing

Publication Analysis

Top Keywords

atf3 rna
24
exosomal atf3
12
i/r induced
12
epithelial cells
12
kidney injury
12
atf3
9
rna attenuates
8
mcp-1
8
adhesion molecules
8
adhesion molecule
8

Similar Publications

Background: () is associated with a variety of malignancies. However, the role of in osteosarcoma and its underlying mechanism are not yet fully understood. This study aimed to explore the role and the mechanism of in osteosarcoma.

View Article and Find Full Text PDF

Background: Nasopharyngeal carcinoma (NPC) is characterized by high programmed death-ligand 1 (PD-L1) expression and abundant infiltration of non-malignant lymphocytes, which renders patients potentially suitable candidates for immune checkpoint blockade therapies. Palate, lung, and nasal epithelium clone (PLUNC) inhibit the growth of NPC cells and enhance cellular apoptosis and differentiation. Currently, the relationship between PLUNC (as a tumor-suppressor) and PD-L1 in NPC is unclear.

View Article and Find Full Text PDF

Integrating Single-Cell RNA-Seq and ATAC-Seq Analysis Reveals Uterine Cell Heterogeneity and Regulatory Networks Linked to Pimpled Eggs in Chickens.

Int J Mol Sci

December 2024

Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.

Pimpled eggs have defective shells, which severely impacts hatching rates and transportation safety. In this study, we constructed single-cell resolution transcriptomic and chromatin accessibility maps from uterine tissues of chickens using single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq). We identified 11 major cell types and characterized their marker genes, along with specific transcription factors (TFs) that determine cell fate.

View Article and Find Full Text PDF

Nanographene oxide (nGO) nanoparticles (NPs) have unique properties and are widely used in various fields, including biomedicine. These NPs, however, also exhibit toxic ef-fects and therefore, the understanding of the molecular mechanism of nGO toxicity is very im-portant mainly for the nanomedicine, especially the cancer therapy. This study aimed to examine the impact of nGO NPs on the expression of genes associated with endoplasmic reticulum (ER) stress, proliferation, and cancerogenesis in both normal human astrocytes and U87MG glioblas-toma cells.

View Article and Find Full Text PDF

Tumor-derived miR-9-5p-loaded EVs regulate cholesterol homeostasis to promote breast cancer liver metastasis in mice.

Nat Commun

December 2024

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China.

Cancer cells secrete extracellular vesicles (EV) encapsulating bioactive cargoes to facilitate inter-organ communication in vivo and are emerging as critical mediators of tumor progression and metastasis, a condition which is often accompanied by a dysregulated cholesterol metabolism. Whether EVs are involved in the control of cholesterol homeostasis during tumor metastasis is still undefined and warrant further investigation. Here, we find that breast cancer-derived exosomal miR-9-5p induces the expression of HMGCR and CH25H, two enzymes involved in cholesterol synthesis and the conversion of 25-hydroxycholesterol from cholesterol by targeting INSIG1, INSIG2 and ATF3 genes in the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!