Uridine phosphorylase catalyzes the phosphorolysis of ribonucleosides, with the nitrogenous base and ribose 1-phosphate as products. Additionally, it catalyzes the reverse reaction of the synthesis of ribonucleosides from ribose 1-phosphate and a nitrogenous base. However, the enzyme does not catalyze the synthesis of nucleosides when the substrate is a nitrogenous base substituted at the 6-position, such as 6-methyluracil (6-MU). In order to explain this fact, it is essential to investigate the three-dimensional structure of the complex of 6-MU with uridine phosphorylase. 6-MU is a pharmaceutical agent that improves tissue nutrition and enhances cell regeneration by normalization of nucleotide exchange in humans. 6-MU is used for the treatment of diseases of the gastrointestinal tract, including infectious diseases. Here, procedures to obtain the uridine phosphorylase from the pathogenic bacterium Vibrio cholerae (VchUPh), purification of this enzyme, crystallization of the complex of VchUPh with 6-MU, and X-ray data collection and preliminary X-ray analysis of the VchUPh-6-MU complex at atomic resolution are reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943090PMC
http://dx.doi.org/10.1107/S2053230X13031877DOI Listing

Publication Analysis

Top Keywords

uridine phosphorylase
16
nitrogenous base
12
preliminary x-ray
8
vibrio cholerae
8
ribose 1-phosphate
8
6-mu
5
crystallization preliminary
4
x-ray study
4
study vibrio
4
uridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!