The structure and magnetic moment distribution are studied for an iron nanoparticle with varying degree of carbon adatom coverage. The limiting models of the study are the clean icosahedral Fe55 particle and the iron particle completely enclosed in carbon cages. Between the two extrema, partially covered particles are considered. The iron cluster with partial coverage of carbon adatoms represents a model of active catalysts in the chemical vapor deposition synthesis of carbon nanotubes. The investigated structures are the bare Fe55 cluster, Fe55N4C(x) (x = 27, 37, 47, 54, 65), and Fe55 encapsulated inside C180 and C240. The two latter are extreme examples of an iron particle completely enclosed in a carbon network. Fe55@C180 and Fe55@C240 present novel structures resembling the endohedral metallofullerenes. Two structural isomers of the Fe55@C180 are considered. Enclosing the Fe55 cluster inside C180 and C240 fullerenes gives rise to changes in the Fe-Fe bond lengths. This alters the magnetic structure of the iron cluster considerably. The interaction between the fullerenes and the enclosed iron cluster is reflected in a charge transfer of 8-13 electrons in the considered endohedral complexes. The localization of atomic charges on the C180 and C240 cages suggests site-selective reactivity of the endohedral complexes. The total magnetic moments of the Fe55N4C(x) nanoparticles vary with the degree of adatom coverage. The magnetic moments of individual Fe atoms depend strongly on the element of the nearest-neighbor atoms and on the coordination number and carry therefore information about the local chemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp54491e | DOI Listing |
Environ Sci Technol
January 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany.
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite.
View Article and Find Full Text PDFN Biotechnol
January 2025
Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, SSW7 2AZ, London, UK. Electronic address:
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gynecology, Handan Central Hospital, Handan, China.
Background: Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood.
Methods: In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!