The Complex Relationship between Liver Cancer and the Cell Cycle: A Story of Multiple Regulations.

Cancers (Basel)

Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos#3-09, Singapore 138673, Singapore.

Published: January 2014

The liver acts as a hub for metabolic reactions to keep a homeostatic balance during development and growth. The process of liver cancer development, although poorly understood, is related to different etiologic factors like toxins, alcohol, or viral infection. At the molecular level, liver cancer is characterized by a disruption of cell cycle regulation through many molecular mechanisms. In this review, we focus on the mechanisms underlying the lack of regulation of the cell cycle during liver cancer, focusing mainly on hepatocellular carcinoma (HCC). We also provide a brief summary of novel therapies connected to cell cycle regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980619PMC
http://dx.doi.org/10.3390/cancers6010079DOI Listing

Publication Analysis

Top Keywords

liver cancer
16
cell cycle
16
cycle regulation
8
liver
5
complex relationship
4
relationship liver
4
cancer
4
cell
4
cancer cell
4
cycle
4

Similar Publications

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.

View Article and Find Full Text PDF

Background: Helicobacter pylori bacteria colonize the gastric mucosa and contribute to the occurrence and development of gastrointestinal diseases. According to the WHO, H. pylori bacteria are considered class I carcinogen.

View Article and Find Full Text PDF

Accelerated Endosomal Escape of Splice-Switching Oligonucleotides Enables Efficient Hepatic Splice Correction.

ACS Appl Mater Interfaces

January 2025

Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.

Splice-switching oligonucleotides (SSOs) can restore protein functionality in pathologies and are promising tools for manipulating the RNA-splicing machinery. Delivery vectors can considerably improve SSO functionality in vivo and allow dose reduction, thereby addressing the challenges of RNA-targeted therapeutics. Here, we report a biocompatible SSO nanocarrier, based on redox-responsive disulfide cross-linked low-molecular-weight linear polyethylenimine (cLPEI), for overcoming multiple biological barriers from subcellular compartments to en-route serum stability and finally in vivo delivery challenges.

View Article and Find Full Text PDF

Case 333: Masson Tumor.

Radiology

January 2025

From the Departments of Radiology (V.K., A.R., P.D.) and Pathology (J.N.), University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205.

A 61-year-old male patient without prior history of ophthalmologic problems presented with pain and redness in the left eye associated with slowly progressive proptosis over the previous 6 months. The patient also had diplopia in rightward and downward gaze. There was no vision loss.

View Article and Find Full Text PDF

Background/Aims: To evaluate invasive treatment outcomes for hepatocellular carcinoma (HCC) in patients aged over 90 years. Materials and methods: Twenty-six patients were included. Information on backgrounds, course of treatment, outcomes, and changes in Child-Pugh (CP) score and performance status (PS), as well as a comparison of treatment-related complications and 2-year survival after treatment, were retrospectively examined and compared with 311 patients aged under 90 years who were matched under the same conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!