A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice. | LitMetric

Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice.

Fitoterapia

Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea. Electronic address:

Published: March 2014

Eugenol is a phenylpropanoid with many pharmacological activities, but its anti-hyperglycemic activity is not yet fully explored. For in vitro study, HepG2 cells and primary rat hepatocytes were used, and glucose production was induced by adding 100 nM of glucagon in the presence of gluconeogenic substrates. In animal study, hyperglycemia was induced by high fat diet (HFD) in male C57BL/6J mice, and eugenol was orally administered at 20 or 40 mg per kg (E20, E40) for 15 weeks. Eugenol significantly inhibited glucagon-induced glucose production and phosphorylated AMPK in the HepG2 and primary rat hepatocytes, and these effects were reversed in the presence of compound C (an AMPK inhibitor) or STO-609 (a CAMKK inhibitor). In addition, the protein and gene expression levels of CREB, CRTC2·CREB complex, PGC-1α, PEPCK and G6Pase were all significantly suppressed. Moreover, inhibition of AMPK by over-expression of dominant negative AMPK prevented eugenol from suppressions of gluconeogenic gene expression and hepatic glucose production. In animal study, plasma glucose and insulin levels of the E40 group were decreased by 31% and 63%, respectively, when compared to those of HFD control. In pyruvate tolerance tests, pyruvate-induced glucose excursions were decreased, indicating that the anti-hyperglycemic activity of eugenol is primarily due to the suppression of hepatic gluconeogenesis. In summary, eugenol effectively ameliorates hyperglycemia through inhibition of hepatic gluconeogenesis via modulating CAMKK-AMPK-CREB signaling pathway. Eugenol or eugenol-containing medicinal plants could represent a promising therapeutic agent to prevent type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2013.12.023DOI Listing

Publication Analysis

Top Keywords

glucose production
16
hepatic glucose
8
signaling pathway
8
c57bl/6j mice
8
mice eugenol
8
anti-hyperglycemic activity
8
primary rat
8
rat hepatocytes
8
animal study
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!