This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2013.11.050DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
24
sample plate
20
rgo gold
16
lbl rgo/aunp
12
thin film
8
reduced graphene
8
graphene oxide
8
mass spectrometry
8
rgo/aunp sample
8
gold
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!