AI Article Synopsis

Article Abstract

Background And Objective: Malformations of the left ventricular outflow tract are one of the most common forms of congenital heart disorders. Recently, it has been shown that mutations in the NOTCH1 gene can lead to bicuspid aortic valve, aortic aneurysm, and hypoplastic left heart syndrome. The aim of our study was to estimate the frequency of NOTCH1 gene mutations/substitutions in patients with aortic coarctation, isolated or combined with bicuspid aortic valve.

Design And Patients: The study included 51 children with coarctation. Detailed family history was obtained for every study subject, and echocardiographic data were obtained for the relatives when available. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Control DNA was obtained from 200 healthy donors.

Results: In more than half of the cases, coarctation was combined with bicuspid aortic valve, and in approximately half of the cases, it was combined with hypoplasia of the aortic arch or descending aorta. Familial history of congenital heart disease was observed in 34.3% of the cases. In total, 29 variants of the NOTCH1 gene were identified in the patient group and in the control subjects. Four of those variants led to amino acid exchange, of which only one, R1279H, was identified in both the patient group and in the controls. This variant was significantly overrepresented in the patients with aortic coarctation compared with those in the control group (P < .05). We conclude that the R1279H substitution in the NOTCH1 gene is significantly overrepresented in patients with aortic coarctation and, therefore, may represent a disease-susceptibility allele.

Download full-text PDF

Source
http://dx.doi.org/10.1111/chd.12157DOI Listing

Publication Analysis

Top Keywords

notch1 gene
24
patients aortic
16
aortic coarctation
16
bicuspid aortic
12
aortic
9
variants notch1
8
congenital heart
8
aortic valve
8
combined bicuspid
8
half cases
8

Similar Publications

Objective: This study investigates the mechanism underlying sorafenib resistance in hepatocellular carcinoma cells (HCC), focusing on DNA damage repair (DDR) pathways to develop targeted therapeutic strategies.

Methods: Bioinformatics analysis was used to screen genes associated with sorafenib resistance, which was further demonstrated by western blotting. Cell proliferation was determined using the EdU assay.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Objective: To analyze the clinical characteristics and molecular biomarkers of adult T-cell lymphoblastic lymphoma (T-LBL) to identify prognostic factors, and to evaluate the efficacy of different chemotherapy regimens, providing a basis for optimizing treatment strategies for T-LBL.

Methods: A total of 89 Patients aged 18-72 years with T-LBL, confirmed via histopathological examination of lymph nodes, extranodal tissues, or bone marrow, were retrospectively included. Clinical data, treatment details, and mutational profiles were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!