Activation of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and reactive oxygen species (ROS) promote neointimal hyperplasia after vascular injury. CaMKII can be directly activated by ROS through oxidation. In this study, we determined whether abolishing the oxidative activation site of CaMKII alters vascular smooth muscle cell (VCMC) proliferation, migration and apoptosis in vitro and neointimal formation in vivo. VSMC isolated from a knock-in mouse with oxidation-resistant CaMKIIδ (CaMKII M2V) displayed similar proliferation but decreased migration and apoptosis. Surprisingly, ROS production and expression of the NADPH oxidase subunits p47 and p22 were decreased in M2V VSMC, whereas superoxide dismutase 2 protein expression was upregulated. In vivo, after carotid artery ligation, no differences in neointimal size or remodeling were observed. In contrast to VSMC, CaMKII expression and autonomous activity were significantly higher in M2V compared to WT carotid arteries, suggesting that an autoregulatory mechanism determines CaMKII activity in vivo. Our findings demonstrate that preventing oxidative activation of CaMKII decreases migration and apoptosis in vitro and suggest that CaMKII regulates ROS production. Our study presents novel evidence that CaMKII expression in vivo is regulated by a negative feedback loop following oxidative activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955051 | PMC |
http://dx.doi.org/10.1016/j.vph.2014.01.001 | DOI Listing |
Physiol Rep
January 2025
Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
Given the growing concern over the impact of brain health in individuals with overweight, understanding how mental exertion (ME) during exercise affects substrate oxidation and cardiorespiratory outcomes is crucial. This study examines how ME impacts these outcomes during an incremental exercise test in adults with overweight. Seventeen adults who were overweight completed an incremental exercise test on a cycle ergometer two times, with and without the Stroop task.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.
Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!