Metabolomics in melon: a new opportunity for aroma analysis.

Phytochemistry

School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

Published: March 2014

Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting cultivars of C. melo subspecies melo were investigated at commercial maturity: three cultivars of var. Cantalupensis group Charentais (cv. Cézanne, Escrito, and Dalton) known to exhibit differences in ripening behaviour and shelf-life, as well as one cultivar of var. Cantalupensis group Ha'Ogan (cv. Noy Yisre'el) and one non-climacteric cultivar of var. Inodorus (cv. Tam Dew). The melon cultivar selection was based upon fruits exhibiting clear differences (cv. Noy Yisre'el and Tam Dew) and similarities (cv. Cézanne, Escrito, and Dalton) in flavour. In total, 58 VOCs were detected by thermal desorption (TD)-GC-MS which permitted the discrimination of each cultivar via Principal component analysis (PCA). PCA indicated a reduction in VOCs in the non-climacteric cv. Tam Dew compared to the four Cantalupensis cultivars. Within the group Charentais melons, the differences between the short, mid and long shelf-life cultivars were considerable. ¹H NMR analysis led to the quantification of 12 core amino acids, their levels were 3-10-fold greater in the Charentais melons, although they were reduced in the highly fragrant cv. Cézanne, indicating their role as VOC precursors. This study along with comparisons to more traditional labour intensive solid phase micro-extraction (SPME) GC-MS VOC profiling data has indicated that the high-throughput PDMS method is of great potential for the assessment of melon aroma and quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180013PMC
http://dx.doi.org/10.1016/j.phytochem.2013.12.010DOI Listing

Publication Analysis

Top Keywords

tam dew
12
var cantalupensis
8
cantalupensis group
8
group charentais
8
cézanne escrito
8
escrito dalton
8
cultivar var
8
noy yisre'el
8
charentais melons
8
metabolomics melon
4

Similar Publications

Earliness and ripening behavior are important attributes of fruits on and off the vine, and affect quality and preference of both growers and consumers. Fruit ripening is a complex physiological process that involves metabolic shifts affecting fruit color, firmness, and aroma production. Melon is a promising model crop for the study of fruit ripening, as the full spectrum of climacteric behavior is represented across the natural variation.

View Article and Find Full Text PDF

Downy mildew, caused by Pseudoperonospora cubensis, is a severe foliar disease of many cucurbit crops worldwide. Forty-one cucurbit cultigens (commercial cultivars and plant introductions) from five genera (Cucumis, Citrullus, Cucurbita, Lagenaria, and Luffa) were assessed for susceptibility to P. cubensis in a research field exposed to natural inoculum in Michigan.

View Article and Find Full Text PDF

Metabolomics in melon: a new opportunity for aroma analysis.

Phytochemistry

March 2014

School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

Cucumis melo fruit is highly valued for its sweet and refreshing flesh, however the flavour and value are also highly influenced by aroma as dictated by volatile organic compounds (VOCs). A simple and robust method of sampling VOCs on polydimethylsiloxane (PDMS) has been developed. Contrasting cultivars of C.

View Article and Find Full Text PDF

Alternaria alternata f. sp. cucurbitae, the casual agent of Alternaria leaf spot, was first described in Greece where it caused severe losses to greenhouse-grown cucumbers (Cucumis sativus) (3,4).

View Article and Find Full Text PDF

The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds.

Plant Mol Biol

April 2008

Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.

A combined chemical, biochemical and molecular study was conducted to understand the differential accumulation of volatile sesquiterpenes in melon fruits. Sesquiterpenes were present mainly in the rinds of climacteric varieties, and a great diversity in their composition was found among varieties. Sesquiterpenes were generally absent in non-climacteric varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!