The main aim of this paper is to quantify the inhomogeneous distribution of the components of acetone/methanol mixture and to give detailed insight into the interplay between the dipole-dipole and hydrogen bonding interactions inducing this inhomogeneity. To this end, we used the concept of infrared excess molar absorption of a given vibrational mode as an observable which contains all the information on the collective interactions in the mixture. Indeed, the changes in the infrared excess molar absorption may be associated with the inhomogeneous distribution (clustering, self-association, or high-density domains) of the components and consequently with the interaction between the two components of the mixture. The results show that acetone molecules are not homogeneously distributed in the mixture, particularly in the mole fraction range of acetone between 0.05 and 0.55. The spectral signature of this inhomogeneity is associated with the appearance of a shoulder in the C═O and C-C stretching vibrational profiles of acetone. This inhomogeneity is driven by the prevalence of the dipole-dipole interactions over those of hydrogen bonding between acetone and methanol molecules. The inhomogeneous distribution of methanol molecules is found to occur in the mole fraction range of acetone between 0.55 and 1. In this case, the hydrogen bond interactions between methanol molecules prevail over those between methanol and acetone. However, the extent of this inhomogeneity is small compared with that of acetone in the low mole fraction range. The spectral signature of this inhomogeneity is not visible in the O-H stretching vibrational mode; however, a second peak appears as a shoulder of the C-O stretching vibrational mode in this range of acetone mole fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp412023gDOI Listing

Publication Analysis

Top Keywords

inhomogeneous distribution
16
mole fraction
16
vibrational mode
12
fraction range
12
range acetone
12
stretching vibrational
12
methanol molecules
12
hydrogen bonding
8
infrared excess
8
excess molar
8

Similar Publications

Insights into cavitation enhancement: Numerical simulation and spectrum analysis of a novel dual-frequency octagonal ultrasonic reactor.

Ultrason Sonochem

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Tianjin Key Laboratory of Chemical process safety and equipment technology, Tianjin 300350, China. Electronic address:

Ultrasonic reactors, widely applied in process intensification, face limitations in their industrial application due to a lack of theoretical support for their structural design and optimization, particularly concerning the uniformity of the cavitation zone. Addressing this gap, our study introduces a novel approach to design a multi-frequency octagonal ultrasonic reactor of capacity 9.5 L through numerical simulation and spectrum analysis.

View Article and Find Full Text PDF

The surface passivation with the heterostructure of the 2D/3D stack has been widely used for boosting the efficiency of n-i-p perovskite solar cells (PSCs). However, the disordered quantum well width distribution of 2D perovskites leads to energy landscape inhomogeneity and crystalline instability, which limits the further development of n-i-p PSCs. Here, a versatile approach, ligand-mediated surface passivation, was developed to produce a phase-pure 2D perovskite passivation layer with a homogeneous energy landscape by dual-ligand codeposition.

View Article and Find Full Text PDF

X-ray absorption spectroscopy (XAS) is a powerful technique that provides information about the electronic and local geometric structural properties of newly developed electrocatalysts, especially when it is performed under operating conditions (i.e., ).

View Article and Find Full Text PDF

Reservoir heterogeneity significantly affects reservoir flooding efficiency and the formation and distribution of residual oil. As an effective method for enhancing recovery, polymer-surfactant (SP) flooding has a complex mechanism of action in inhomogeneous reservoirs. In this study, the effect of reservoir heterogeneity on the SP drive was investigated by designing core parallel flooding experiments combined with NMR and CT scanning techniques, taking conglomerate reservoirs in a Xinjiang oilfield as the research object.

View Article and Find Full Text PDF

Diffusion-limited cytokine signaling in T cell populations.

iScience

June 2024

Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.

Effective immune-cell responses depend on collective decision-making mediated by diffusible intercellular signaling proteins called cytokines. Here, we designed a three-dimensional spatiotemporal modeling framework and a precise finite-element simulation setup to systematically investigate the origin and consequences of spatially inhomogeneous cytokine distributions in lymph nodes. We found that such inhomogeneities are critical for effective paracrine signaling, and they do not arise by diffusion and uptake alone, but rather depend on properties of the cell population such as an all-or-none behavior of cytokine secreting cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!