[Synthesis and immunosuppressive effects of novel phthalazine ketone derivatives].

Yao Xue Xue Bao

Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shengyang Pharmaceutical University, Shengyang 110016, China.

Published: October 2013

A series of phthalazine ketone compounds were synthesized and the structures were confirmed by H NMR and HR-MS spectrum. All target compounds were obtained through 7 steps, including selective reduction, nitration, bromination, ring enlargement, reduction, Knoevenagel and acylated reaction. The compounds were evaluated for their immunosuppressive effects of T-cell proliferation and inhibitory activity of IMPDH type II in vitro, as well as their structure-activity relationship were assessed. Several compounds exhibited strong immunosuppressive properties, especially compounds 7f and 7h, with IC50 values of 0.093 micromol x L(-1) and 0.14 micromol x L(-1) respectively, which were superior to mycophenolic acid. The information obtained from the studies may be useful for further research on the immunosuppressive agents.

Download full-text PDF

Source

Publication Analysis

Top Keywords

immunosuppressive effects
8
phthalazine ketone
8
micromol l-1
8
compounds
5
[synthesis immunosuppressive
4
effects novel
4
novel phthalazine
4
ketone derivatives]
4
derivatives] series
4
series phthalazine
4

Similar Publications

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.

Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.

View Article and Find Full Text PDF

As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has fundamentally transformed cancer treat-ment by unlocking the potency of CD8+ T cells by targeting the suppression of the CTLA-4 and PD-1/PD-L1 pathways. Nevertheless, ICBs are associated with the risk of severe side effects and resistance in certain patients, driving the search for novel and safer immune check-point modulators. Monoamine Oxidase A (MAO-A) plays an unexpected role in the field of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!