Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective. To verify whether systemic biometals dysfunctions affect neurotransmission in living Alzheimer's disease (AD) patients. Methods. We performed a case-control study using magnetoencephalography to detect sensorimotor fields of AD patients, at rest and during median nerve stimulation. We analyzed position and amount of neurons synchronously activated by the stimulation in both hemispheres to investigate the capability of the primary somatosensory cortex to reorganize its circuitry disrupted by the disease. We also assessed systemic levels of copper, ceruloplasmin, non-Cp copper (i.e., copper not bound to ceruloplasmin), peroxides, transferrin, and total antioxidant capacity. Results. Patients' sensorimotor generators appeared spatially shifted, despite no change of latency and strength, while spontaneous activity sources appeared unchanged. Neuronal reorganization was greater in moderately ill patients, while delta activity increased in severe patients. Non-Cp copper was the only biological variable appearing to be associated with patient sensorimotor transmission. Conclusions. Our data strengthen the notion that non-Cp copper, not copper in general, affects neuronal activity in AD. Significance. High plasticity in the disease early stages in regions controlling more commonly used body parts strengthens the notion that physical and cognitive activities are protective factors against progression of dementia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876721 | PMC |
http://dx.doi.org/10.1155/2013/638312 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!