The social amoeba Dictyostelium discoideum was instrumental in the discovery and early characterization of inositol pyrophosphates, a class of molecules possessing highly-energetic pyrophosphate bonds. Inositol pyrophosphates regulate diverse biological processes and are attracting attention due to their ability to control energy metabolism and insulin signalling. However, inositol pyrophosphate research has been hampered by the lack of simple experimental procedures to study them. The recent development of polyacrylamide gel electrophoresis (PAGE) and simple staining to resolve and detect inositol pyrophosphate species has opened new investigative possibilities. This technology is now commonly applied to study in vitro enzymatic reactions. Here we employ PAGE technology to characterize the D. discoideum inositol pyrophosphate metabolism. Surprisingly, only three major bands are detectable after resolving acidic extract on PAGE. We have demonstrated that these three bands correspond to inositol hexakisphosphate (IP₆ or Phytic acid) and its derivative inositol pyrophosphates, IP₇ and IP₈. Biochemical analyses and genetic evidence were used to establish the genuine inositol phosphate nature of these bands. We also identified IP₉ in D. discoideum cells, a molecule so far detected only from in vitro biochemical reactions. Furthermore, we discovered that this amoeba possesses three different inositol pentakisphosphates (IP₅) isomers, which are largely metabolised to inositol pyrophosphates. Comparison of PAGE with traditional Sax-HPLC revealed an underestimation of the cellular abundance of inositol pyrophosphates by traditional methods. In fact our study revealed much higher levels of inositol pyrophosphates in D. discoideum in the vegetative state than previously detected. A three-fold increase in IP₈ was observed during development of D. discoideum a value lower that previously reported. Analysis of inositol pyrophosphate metabolism using ip6k null amoeba revealed the absence of developmentally-induced synthesis of inositol pyrophosphates, suggesting that the alternative class of enzyme responsible for pyrophosphate synthesis, PP-IP₅K, doesn't' play a major role in the IP₈ developmental increase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887064PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085533PLOS

Publication Analysis

Top Keywords

inositol pyrophosphates
28
inositol pyrophosphate
20
inositol
15
pyrophosphate metabolism
12
dictyostelium discoideum
8
discoideum inositol
8
gel electrophoresis
8
pyrophosphate
7
pyrophosphates
7
discoideum
6

Similar Publications

The putative polyamine transporter Shp2 facilitates phosphate export in an Xpr1-independent manner and contributes to high phosphate tolerance.

J Biol Chem

December 2024

Faculty of Science and Engineering, Department of Biology, Konan University, Kobe, Japan; Institute of Integrative Neurobiology, Konan University, Kobe, Japan. Electronic address:

Phosphate (Pi) homeostasis at the cellular level is crucial, requiring coordinated Pi uptake, storage, and export. However, the regulatory mechanisms, particularly those governing Pi export, remain elusive, despite their relevance to human diseases like primary familial brain calcification. While Xpr1, conserved across eukaryotes, is the only known Pi exporter, the existence of additional Pi exporting factors is evident; however, these factors have been poorly characterized.

View Article and Find Full Text PDF

Inhibiting IP6K1 confers atheroprotection by elevating circulating apolipoprotein A-I.

Metabolism

December 2024

Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:

Background And Aims: Atherosclerotic cardiovascular diseases are the leading cause of death. Apolipoprotein A-I (apoA-I) mediates cholesterol efflux to lower the risks of atherosclerosis. Elevating circulating apoA-I is an effective strategy for atheroprotection.

View Article and Find Full Text PDF

Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular levels are precisely regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks harbor phosphatase domains that hydrolyze PP-InsPs.

View Article and Find Full Text PDF

Phosphorus (P) is a quintessential macronutrient utilized by plants to support various metabolic processes during growth and development. Recent studies have revealed the pivotal role of inositol hexa-kis/pyrophosphate (InsP6-8), the derivatives of Myo-inositol (MI), in facilitating the interaction between SYG1/PHO81/XPR1 (SPX) and Phosphate starvation response (PHR) proteins. Myo-inositol phosphate synthase (MIPS) catalyzes the first committed step in MI biosynthesis.

View Article and Find Full Text PDF

Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!