The sea lamprey is an important model organism for investigating the evolutionary origins of vertebrates. As more vertebrate genome sequences are obtained, evolutionary developmental biologists are becoming increasingly able to identify putative gene regulatory elements across the breadth of the vertebrate taxa. The identification of these regions makes it possible to address how changes at the genomic level have led to changes in developmental gene regulatory networks and ultimately to the evolution of morphological diversity. Comparative genomics approaches using sea lamprey have already predicted a number of such regulatory elements in the lamprey genome. Functional characterisation of these sequences and other similar elements requires efficient reporter assays in lamprey. In this report, we describe the development of a transient transgenesis method for lamprey embryos. Focusing on conserved non-coding elements (CNEs), we use this method to investigate their functional conservation across the vertebrate subphylum. We find instances of both functional conservation and lineage-specific functional evolution of CNEs across vertebrates, emphasising the utility of functionally testing homologous CNEs in their host species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887057 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085492 | PLOS |
Development
January 2025
School of Science, Technische Universität Dresden, 01062 Dresden, Germany.
The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.
Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.
View Article and Find Full Text PDFPLoS One
January 2025
School of Geography, Geology and the Environment, Institute for Environmental Futures, University of Leicester, Leicester, United Kingdom.
Dry evergreen Afromontane forests are severely threatened due to the expansion of agriculture and overgrazing by livestock. The objective of this study was to investigate the composition of woody species, structure, regeneration status and plant communities in Seqela forest, as well as the relationship between plant community types and environmental variables. Systematic sampling was used to collect vegetation and environmental data from 52 (20 m x 20 m) (400 m2) plots.
View Article and Find Full Text PDFSci Adv
January 2025
Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark.
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!