The peptidyl-prolyl isomerase Pin1 is over-expressed in several cancer tissues is a potential prognostic marker in prostate cancer, and Pin1 ablation can suppress tumorigenesis in breast and prostate cancers. Pin1 can co-operate with activated ErbB2 or Ras to enhance tumorigenesis. It does so by regulating the activity of proteins that are essential for gene expression and cell proliferation. Several targets of Pin1 such as c-Myc, the Androgen Receptor, Estrogen Receptor-alpha, Cyclin D1, Cyclin E, p53, RAF kinase and NCOA3 are deregulated in cancer. At the posttranscriptional level, emerging evidence indicates that Pin1 also regulates mRNA decay of histone mRNAs, GM-CSF, Pth, and TGFβ mRNAs by interacting with the histone mRNA specific protein SLBP, and the ARE-binding proteins AUF1 and KSRP, respectively. To understand how Pin1 may affect mRNA abundance on a genome-wide scale in mammalian cells, we used RNAi along with DNA microarrays to identify genes whose abundance is significantly altered in response to a Pin1 knockdown. Functional scoring of differentially expressed genes showed that Pin1 gene targets control cell adhesion, leukocyte migration, the phosphatidylinositol signaling system and DNA replication. Several mRNAs whose abundance was significantly altered by Pin1 knockdown contained AU-rich element (ARE) sequences in their 3' untranslated regions. We identified HuR and AUF1 as Pin1 interacting ARE-binding proteins in vivo. Pin1 was also found to stabilize all core histone mRNAs in this study, thereby validating our results from a previously published study. Statistical analysis suggests that Pin1 may target the decay of essential mRNAs that are inherently unstable and have short to medium half-lives. Thus, this study shows that an important biological role of Pin1 is to regulate mRNA abundance and stability by interacting with specific RNA-binding proteins that may play a role in cancer progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887067 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085427 | PLOS |
J Med Chem
January 2025
Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths globally, and the need for effective systemic therapies for HCC is urgent. Our previous work reveals that Pin1 is a potential anti-HCC target, which regulates miRNA biogenesis and identifies as a novel Pin1 inhibitor to suppresses HCC. However, a great demand in HCC therapy as well as the limited chemical stability and pharmacokinetic feature of motivated us to find improved Pin1 inhibitors.
View Article and Find Full Text PDFMol Cell
January 2025
Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:
Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds (IC = 11.55 μM) and (IC = 3.
View Article and Find Full Text PDFCancer Discov
January 2025
Salk Institute for Biological Studies, La Jolla, CA, United States.
Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!