E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885694 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085324 | PLOS |
Vet Res
January 2025
Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets.
View Article and Find Full Text PDFParasitol Res
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P.R. China.
Swine coccidiosis is a host-specific protozoan disease caused by Cystoisospora suis and various Eimeria species, leading to diarrhea or subclinical signs in pigs. In this study, 3296 fecal samples from 55 farms across six provinces in China were collected and examined to determine the prevalence and molecular characteristics of swine coccidia. The single oocyst isolation technique (SOIT) and molecular characterization identified nine coccidian species, with an overall infection prevalence of 13.
View Article and Find Full Text PDFJ Virol
January 2025
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
Porcine epidemic diarrhea virus (PEDV), as a type of Alphacoronavirus causing acute diarrhea and high death rate among sucking piglets, poses great financial damage to the swine industry. Nevertheless, the molecular mechanism whereby PEDV enters host cells is unclear, limiting the development of PED vaccines and anti-PEDV agents. The present study found that the host protein ribonuclease kappa (RNASEK) was regulated by USF2, a transcription factor, and facilitated the PEDV replication.
View Article and Find Full Text PDFJ Helminthol
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, 23119, Elazig, Türkiye.
The primary definitive host of the giant acanthocephalan, also known as the giant thorny-headed worm (Pallas, 1781), is . The definitive host ingests the parasite by consuming infected scarabaeoid or hydrophilid beetles. This study aimed to ascertain the presence of in the intermediate hosts through molecular analysis.
View Article and Find Full Text PDFMol Ecol
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!