Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Early stage DR involves inflammation, vascular leakage, apoptosis of vascular cells and neurodegeneration. In this study, we hypothesized that cells derived from the stromal fraction of adipose tissue (ASC) could therapeutically rescue early stage DR features. Streptozotocin (STZ) induced diabetic athymic nude rats received single intravitreal injection of human ASC into one eye and saline into the other eye. Two months post onset of diabetes, administration of ASC significantly improved "b" wave amplitude (as measured by electroretinogram) within 1-3 weeks of injection compared to saline treated diabetic eyes. Subsequently, retinal histopathological evaluation revealed a significant decrease in vascular leakage and apoptotic cells around the retinal vessels in the diabetic eyes that received ASC compared to the eyes that received saline injection. In addition, molecular analyses have shown down-regulation in inflammatory gene expression in diabetic retina that received ASC compared to eyes that received saline. Interestingly, ASC were found to be localized near retinal vessels at higher densities than seen in age matched non-diabetic retina that received ASC. In vitro, ASC displayed sustained proliferation and decreased apoptosis under hyperglycemic stress. In addition, ASC in co-culture with retinal endothelial cells enhance endothelial survival and collaborate to form vascular networks. Taken together, our findings suggest that ASC are able to rescue the neural retina from hyperglycemia-induced degeneration, resulting in importantly improved visual function. Our pre-clinical studies support the translational development of adipose stem cell-based therapy for DR to address both retinal capillary and neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886987 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084671 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!