A quantitative comparison of the behavior of human ventricular cardiac electrophysiology models in tissue.

PLoS One

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, United States of America.

Published: September 2014

Numerical integration of mathematical models of heart cell electrophysiology provides an important computational tool for studying cardiac arrhythmias, but the abundance of available models complicates selecting an appropriate model. We study the behavior of two recently published models of human ventricular action potentials, the Grandi-Pasqualini-Bers (GPB) and the O'Hara-Virág-Varró-Rudy (OVVR) models, and compare the results with four previously published models and with available experimental and clinical data. We find the shapes and durations of action potentials and calcium transients differ between the GPB and OVVR models, as do the magnitudes and rate-dependent properties of transmembrane currents and the calcium transient. Differences also occur in the steady-state and S1-S2 action potential duration and conduction velocity restitution curves, including a maximum conduction velocity for the OVVR model roughly half that of the GPB model and well below clinical values. Between single cells and tissue, both models exhibit differences in properties, including maximum upstroke velocity, action potential amplitude, and minimum diastolic interval. Compared to experimental data, action potential durations for the GPB and OVVR models agree fairly well (although OVVR epicardial action potentials are shorter), but maximum slopes of steady-state restitution curves are smaller. Although studies show alternans in normal hearts, it occurs only in the OVVR model, and only for a narrow range of cycle lengths. We find initiated spiral waves do not progress to sustained breakup for either model. The dominant spiral wave period of the GPB model falls within clinically relevant values for ventricular tachycardia (VT), but for the OVVR model, the dominant period is longer than periods associated with VT. Our results should facilitate choosing a model to match properties of interest in human cardiac tissue and to replicate arrhythmia behavior more closely. Furthermore, by indicating areas where existing models disagree, our findings suggest avenues for further experimental work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885549PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084401PLOS

Publication Analysis

Top Keywords

action potentials
12
ovvr models
12
action potential
12
ovvr model
12
models
10
human ventricular
8
model
8
published models
8
gpb ovvr
8
conduction velocity
8

Similar Publications

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Perception of motion-in-depth is essential to guide and modify the hitting action in interceptive-dominated sports (e.g., tennis).

View Article and Find Full Text PDF

A Probabilistic Modeling Framework for the Prediction of Spontaneous Premature Beats and Reentry Initiation.

Heart Rhythm

January 2025

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:

Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.

Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.

View Article and Find Full Text PDF

Local field potential phase modulates the evoked response to electrical stimulation in visual cortex.

J Neural Eng

January 2025

Department of Physiology and Department of Electrical and Computer System Engineering, Monash University - Clayton Campus, Wellington Rd, Melbourne, Victoria, 3800, AUSTRALIA.

Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the local field potential.

View Article and Find Full Text PDF

Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!