AI Article Synopsis

  • Low oxygen zones in ocean ecosystems are expanding due to climate change, and these areas are also becoming more acidic due to increased CO2 levels.
  • Studies on marine organisms, especially early life stages of bivalves like bay scallops and hard clams, show that both low oxygen and acidification have severe, combined negative effects on their survival and growth.
  • Research indicates that the impacts of these two stressors should be assessed together, as the compounded effects are greater than the impacts of each stressor alone, highlighting the need for urgent attention as marine life faces changing ocean conditions.

Article Abstract

Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4-7.6) reduced survivorship (by >50%), low oxygen (30-50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885513PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083648PLOS

Publication Analysis

Top Keywords

low oxygen
20
early life
16
life stage
16
stage bivalves
12
marine organisms
12
hypoxia acidification
8
oxygen acidification
8
climate change
8
stage clams
8
reduced growth
8

Similar Publications

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.

View Article and Find Full Text PDF

Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.

View Article and Find Full Text PDF

Regulation of pathologic fibroblast functions in digestive diseases: a role for hypoxia?

Am J Physiol Gastrointest Liver Physiol

January 2025

Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.

The recent uncovering of fibroblast heterogeneity has given great insight into the versatility of the stroma. Among other cellular processes, fibroblasts are now thought to contribute to the coordination of immune responses in a range of chronic inflammatory diseases and cancer. While the pathologic roles of myofibroblasts, inflammatory fibroblasts and cancer associated fibroblasts in disease are reasonably well understood, the mechanisms behind their activation remain to be uncovered.

View Article and Find Full Text PDF

Nanoclay-Mediated Crystal-Phase Engineering in Biofunctions to Balance Antibacteriality and Cytotoxicity.

Nano Lett

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

The crystalline phase of metal oxides is a key determinant of the properties and functions of the nanomaterials. Traditional approaches have focused on replicating bulk-phase structures, with limited exploration of phase diversity due to challenges in controlling the crystal morphology. Here, we introduce a nanoclay-mediated strategy for crystal-phase engineering, using talc to modulate the morphology and phase of manganese oxide (MnOx) nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!