Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. However, despite these advantages, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874582PMC
http://dx.doi.org/10.3389/fphar.2013.00157DOI Listing

Publication Analysis

Top Keywords

polymeric micelles
12
brain cancer
8
therapeutic agents
8
gbm
5
potential polymeric
4
micelles context
4
context glioblastoma
4
glioblastoma therapy
4
therapy glioblastoma
4
glioblastoma multiforme
4

Similar Publications

Polymeric Nanoarchitectures: Advanced Cargo Systems for Biological Applications.

Macromol Biosci

January 2025

Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands.

Polymeric nanoarchitectures are crafted from amphiphilic block copolymers through a meticulous self-assembly process. The composition of these block copolymers is finely adjustable, bestowing precise control over the characteristics and properties of the resultant polymeric assemblies. These nanoparticles have garnered significant attention, particularly in the realm of biological sciences, owing to their biocompatibility, favorable pharmacokinetics, and facile chemically modifiable nature.

View Article and Find Full Text PDF

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

Cancer remains one of the leading causes of death worldwide, highlighting the urgent need for novel antitumor drugs. Natural products have long been a crucial source of anticancer agents. Among these, emodin (EMO), a multifunctional anthraquinone compound, exhibits significant anticancer effects but is hindered in clinical applications by challenges such as low solubility, rapid metabolism, poor bioavailability, and off-target toxicity.

View Article and Find Full Text PDF

Usnic acid (UA) is one of the most abundant secondary metabolites of lichens. Its antibacterial, anti-inflammatory, antiviral, and antitumor properties make it one of the few commercially available lichens compounds. Owing to its low solubility it has limited application, for that reason encapsulation in polymeric micelles (UA-PM) has been used to solve this aspect.

View Article and Find Full Text PDF

Liver fibrosis is a prevalent liver disease associated with significant morbidity, and the activation of hepatic stellate cells (HSCs) serves as the primary causative factor driving the progression of liver fibrosis. However, capillarization of liver sinusoidal endothelial cells (LSECs) induced by hepatic fibrosis can reduce nitric oxide (NO) production and bioavailability, which consequently loses the ability to retain HSCs dormant, leading to amplified HSCs activation. Herein, an elaborate micelle (VN-M@BN) loaded with benazepril (BN) was constructed by self-assembly of polymeric NO donor, aiming for the controlled release of NO in liver fibrosis lesions thereby impeding the progression of liver fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!