CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription.

PLoS Pathog

Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America ; George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America.

Published: January 2014

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular genome by acting as gene-specific activators of some promoters, but differ in acting as global negative regulators of transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887114PMC
http://dx.doi.org/10.1371/journal.ppat.1003880DOI Listing

Publication Analysis

Top Keywords

ctcf cohesin
20
kshv lytic
12
gene expression
12
kshv
11
transcription
9
ctcf
8
ctcf rad21
8
restriction factors
8
kaposi's sarcoma-associated
8
sarcoma-associated herpesvirus
8

Similar Publications

T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8 T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8 T cell activation, associated with changes in gene transcription.

View Article and Find Full Text PDF

Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis.

J Cell Biol

March 2025

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.

How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

Cohesin positions the epigenetic reader Phf2 within the genome.

EMBO J

January 2025

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

Comments on the Hox timer and related issues.

Cells Dev

December 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2024 not only marked the 100th anniversary of the discovery of the organizer by Hilde Pröscholdt-Mangold and Hans Spemann, but also the 40th anniversary of the discovery of the homeobox, a DNA region encoding a DNA binding peptide present in several transcription factors of critical importance for the gastrulating embryo. In particular, this sequence is found in the 39 members of the amniote Hox gene family, a series of genes activated in mid-gastrulation and involved in organizing morphologies along the extending anterior to posterior (AP) body axis. Over the past 30 years, the study of their coordinated regulation in various contexts has progressively revealed their surprising regulatory strategies, based on mechanisms acting in-cis, which can translate a linear distribution of series of genes along the chromatin fiber into the proper sequences of morphologies observed along our various body axes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!