Growth of developing and regenerative biological tissues of different cell types is usually driven by stem cells and their local environment. Here, we present a computational framework for continuum tissue growth models consisting of stem cells, cell lineages, and diffusive molecules that regulate proliferation and differentiation through feedback. To deal with the moving boundaries of the models in both open geometries and closed geometries (through polar coordinates) in two dimensions, we transform the dynamic domains and governing equations to fixed domains, followed by solving for the transformation functions to track the interface explicitly. Clustering grid points in local regions for better efficiency and accuracy can be achieved by appropriate choices of the transformation. The equations resulting from the incompressibility of the tissue is approximated by high-order finite difference schemes and is solved using the multigrid algorithms. The numerical tests demonstrate an overall spatiotemporal second-order accuracy of the methods and their capability in capturing large deformations of the tissue boundaries. The methods are applied to two biological systems: stratified epithelia for studying the effects of two different types of stem cell niches and the scaling of a morphogen gradient with the size of the imaginal wing disc during growth. Direct simulations of both systems suggest that that the computational framework is robust and accurate, and it can incorporate various biological processes critical to stem cell dynamics and tissue growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883546 | PMC |
http://dx.doi.org/10.1007/s10915-013-9728-6 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFJpn J Clin Oncol
January 2025
Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan.
A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.
The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!