Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity--a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry--permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888978 | PMC |
http://dx.doi.org/10.1038/srep03656 | DOI Listing |
J Transl Med
December 2024
Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu, China.
Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.
View Article and Find Full Text PDFExp Mol Med
January 2025
Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
Bladder cancer poses significant clinical challenges due to its high metastatic potential and poor prognosis, especially when it progresses to muscle-invasive stages. Here, we show that the mA reader YTHDC1 is downregulated in muscle-invasive bladder cancer and is negatively correlated with the expression of epithelial‒mesenchymal transition genes. The functional inhibition or depletion of YTHDC1 increased the migration and invasion of urothelial cells.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
The PepT transporter mediates the transport of peptides across biological membranes. Despite advancements in structural biology, including cryogenic electron microscopy structures resolving PepT in different states, the molecular basis of peptide recognition and transport by PepT is not fully elucidated. In this study, we used molecular dynamics simulations, Markov State Models (MSMs), and Transition Path Theory (TPT) to investigate the transport mechanism of an alanine-alanine peptide (Ala-Ala) through the PepT transporter.
View Article and Find Full Text PDFDye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Science, Chemistry Department, Cairo University, Giza, 12613, Egypt.
The swift rise of hazardous dye effluent from diverse sectors continues to be a severe public health problem and a top priority for environmental preservation, presenting a significant obstacle to the current conventional water treatment systems. This study aims to develop an efficient and reusable approach for removing cresyl fast violet dye using mullite nanoparticles. Some factors such as pH, nano-mullite dosage, agitation speed, time, and others that affect the removal process were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!