Measurements of photoinduced Fe(2+)-to-Ru(3+) electron transfer (ET), supported by theoretical analysis, demonstrate that mutations off the dominant ET pathways can strongly influence the redox reactivity of cytochrome c. The effects arise from the change in the protein dynamics mediated by the intraprotein hydrogen-bonding network.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc47943aDOI Listing

Publication Analysis

Top Keywords

redox reactivity
8
hydrogen-bonding network
8
control cytochrome
4
cytochrome redox
4
reactivity off-pathway
4
off-pathway modifications
4
modifications protein
4
protein hydrogen-bonding
4
network measurements
4
measurements photoinduced
4

Similar Publications

Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.

View Article and Find Full Text PDF

As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.

View Article and Find Full Text PDF

Insight into enhanced tetracycline photodegradation by hematite/biochar composites: Roles of charge transfer, biochar-derived dissolved organic matter and persistent free radicals.

Bioresour Technol

January 2025

National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:

The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.

View Article and Find Full Text PDF

Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.

View Article and Find Full Text PDF

Functionalized Terthiophene as an Ambipolar Redox System: Structure, Spectroscopy, and Switchable Proton-Coupled Electron Transfer.

J Am Chem Soc

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.

Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!