Highly sensitive and multiple DNA biosensor based on isothermal strand-displacement polymerase reaction and functionalized magnetic microparticles.

Biosens Bioelectron

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China.

Published: May 2014

A universal, highly sensitive and selective chemiluminescence (CL) imaging method has been developed for high throughput detection of DNA. After molecular beacon (MB) hybridized with the target DNA, the biotin-labeled primer was attached to a magnetic microparticle (MMP) surface by hybridization with the stem part of the MB to initiate a polymerization of DNA strand, which led to the release of the target and another polymerization cycle. Thus the polymerization produced the multiplication of biotin-labeled primer on the surface of MMPs. Sequentially, the horseradish peroxidase (HRP) was conjugated to MMPs surface through the biotin-streptavidin reaction. Then, the conjugated HRP was determined by the CL imaging method. This proposed method could detect the sequence-specific DNA as low as 0.4 pM and discriminate perfectly matched target DNA from the mismatch DNAs. All in all, this proposed method exhibited an efficient amplification performance, and would open new opportunities for sensitive and high throughput detection of DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2013.11.066DOI Listing

Publication Analysis

Top Keywords

highly sensitive
8
imaging method
8
high throughput
8
throughput detection
8
detection dna
8
target dna
8
biotin-labeled primer
8
proposed method
8
dna
7
sensitive multiple
4

Similar Publications

Objectives: Explore humanitarian healthcare professionals' (HCPs) perceptions about implementing children's palliative care and to identify their educational needs and challenges, including learning topics, training methods, and barriers to education.

Methods: Humanitarian HCPs were interviewed about perspectives on children's palliative care and preferences and needs for training. Interviews were transcribed, coded, and arranged into overarching themes.

View Article and Find Full Text PDF

Purpose: Astigmatism can lead to meridional amblyopia, an orientation-specific visual deficit. This study investigated the effects of astigmatism on meridional anisotropy in contrast sensitivity (CS) and steady-state visual evoked potential (ssVEP) across a range of spatial frequencies.

Methods: Thirty-two young adults with a best-corrected distance visual acuity of logMAR 0 or better were categorized into two groups: highly astigmatic (HAS,  = 16) with spherical-equivalent error (SE) ≥ -6.

View Article and Find Full Text PDF

Enhanced ensemble learning-based uncertainty and sensitivity analysis of ventilation rate in a novel radiative cooling building.

Heliyon

January 2025

Department of Energy System Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, No. 15, Pardis St., Molasadra Ave., Vanak Sq., Tehran, Iran.

The rising global demand for air conditioning systems, driven by increasing temperatures and urbanization, has led to higher energy consumption and greenhouse gas emissions. HVAC systems, particularly AC, account for nearly half of building energy use, highlighting the need for efficient cooling solutions. Passive cooling, especially radiative cooling, offers potential to reduce cooling loads and improve energy efficiency.

View Article and Find Full Text PDF

Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.

View Article and Find Full Text PDF

Background: The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretation. We sought to automate the post-run analysis of TAC data using machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!