It is a challenge to apply anaerobic ammonium oxidation (anammox) for nitrogen removal from wastewater at low temperatures. Maintenance of anammox- and aerobic ammonia oxidizing bacteria (AOB) and suppression of nitrite oxidizing bacteria (NOB) are key issues. In this work, a nitritation-anammox moving bed biofilm pilot reactor was operated at 19-10°C for 300 d. Nitrogen removal was decreasing, but stable, at 19-13°C. At 10°C removal became unstable. Quantitative PCR, fluorescence in situ hybridization and gene sequencing showed that no major microbial community changes were observed with decreased temperature. Anammox bacteria dominated the biofilm (0.9-1.2 × 10(14) 16S rRNA copies m(-2)). Most anammox bacteria were similar to Brocadia sp. 40, but another smaller Brocadia population was present near the biofilm-water interface, where also the AOB community (Nitrosomonas) was concentrated in thin layers (1.8-5.3 × 10(12) amoA copies m(-2)). NOB (Nitrobacter, Nitrospira) were always present at low concentrations (<1.3 × 10(11) 16S rRNA copies m(-2)).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.12.062DOI Listing

Publication Analysis

Top Keywords

moving bed
8
bed biofilm
8
low temperatures
8
nitrogen removal
8
oxidizing bacteria
8
anammox bacteria
8
copies m-2
8
structure composition
4
biofilm
4
composition biofilm
4

Similar Publications

Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater.

Bioresour Technol

January 2025

Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy. Electronic address:

In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.

View Article and Find Full Text PDF

This pilot-scale study investigated nitrifying moving bed biofilm reactors (MBBRs) in a post-lagoon treatment setup over two years to evaluate the impact of seasonal ammonia fluctuations on winter nitrification. In Year 2, reactors without fall ammonia starvation achieved significantly higher winter ammonia removal (97.2 ± 1.

View Article and Find Full Text PDF

Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.

View Article and Find Full Text PDF

Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

Background/objectives: Measuring the physical functioning of older hip fracture patients using wearables is desirable, with physical activity monitoring offering a promising approach. However, it is first important to assess physical activity in healthy older adults. This study quantifies physical functioning with physical activity parameters and assesses those parameters in community-dwelling older adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!