Rett syndrome (RTT) is a severe neurodevelopmental disorder characterized by the progressive loss of intellectual functioning, fine and gross motor skills and communicative abilities, deceleration of head growth, and the development of stereotypic hand movements, occurring after a period of normal development. The classic form of RTT involves mutation in MECP2 while the involvement of CDKL5 and FOXG1 genes has been identified in atypical RTT phenotype. FOXG1 gene encodes for a fork-head box protein G1, a transcription factor acting primarily as transcriptional repressor through DNA binding in the embryonic telencephalon as well as a number of other neurodevelopmental processes. In this report we have described the molecular analysis of FOXG1 gene in Indian patients with Rett syndrome. FOXG1 gene mutation analysis was done in a cohort of 34 MECP2/CDKL5 mutation negative RTT patients. We have identified a novel mutation (p. D263VfsX190) in FOXG1 gene in a patient with congenital variant of Rett syndrome. This mutation resulted into a frameshift, thereby causing an alteration in the reading frames of the entire coding sequence downstream of the mutation. The start position of the frameshift (Asp263) and amino acid towards the carboxyl terminal end of the protein was found to be well conserved across species using multiple sequence alignment. Since the mutation is located at forkhead binding domain, the resultant mutation disrupts the secondary structure of the protein making it non-functional. This is the first report from India showing mutation in FOXG1 gene in Rett syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2013.12.063 | DOI Listing |
Biol Psychiatry Glob Open Sci
January 2025
Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.
Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.
Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.
Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.
Int J Mol Sci
November 2024
Department of Biochemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
The inner ear is one of the sensory organs of vertebrates and is largely composed of the vestibule, which controls balance, and the cochlea, which is responsible for hearing. In particular, a problem in cochlear development can lead to hearing loss. Although numerous studies have been conducted on genes involved in the development of the cochlea, many areas still need to be discovered regarding factors that control the patterning of the early cochlear duct.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
December 2024
Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China.
To investigate the relationship between the expression patterns of SOX2 and FOXG1 and the differentiation/development level of neural components in immature teratoma and to determine the clinical significance and potential application of this correlation in a clinical setting. We conducted a comprehensive whole transcriptome sequencing analysis to identify differentially expressed genes (DEGs) across various subtypes of ovarian germ cell tumors. Additionally, immunohistochemical staining of paraffin-embedded tissue sections was employed to assess the nuclear staining pattern of SOX2 and FOXG1 proteins within the tumor tissues.
View Article and Find Full Text PDFAnn Med
December 2024
Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China.
Sci Rep
November 2024
Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Over the past decade, substantial scientific evidence has showed that long non-coding RNAs (lncRNAs) are extensively expressed and play a crucial role in gene modulation through a diverse range of transcriptional, and post-transcriptional mechanisms. Recent discoveries have emphasized the involvement of lncRNAs in maintaining cellular homeostasis and neurogenesis in the brain. Accumulating reports identified dysregulated lncRNAs associated with psychiatric disorders, including autism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!