Background: Recent research into the treatment of bacterial meningitis has examined the innate immune system, specifically the complement system, as a potential target for adjuvant therapy. However, the effects of blocking the complement system may be pathogen dependent.
Methods: We measured cerebrospinal fluid (CSF) levels of complement components C1q, C3a, iC3b, C5a, sC5b-9, CFH and MBL in 310 patients with pneumococcal and meningococcal meningitis from a prospective nationwide cohort study. The CSF complement component levels were successfully determined for between 289 (93%) and 307 (99%) patients, depending on available volumes of stored CSF.
Results: Complement factors C1q and MBL as well as common complement pathway factors C3a, iC3b, C5a, sC5b-9 and complement regulator CFH were all elevated in patients with bacterial meningitis as compared to the controls. CSF levels of complement components C5a and sC5b-9 were higher in patients with pneumococcal meningitis compared to those with meningococcal meningitis. After correction for age, immunocompromised state and level of consciousness, the CSF concentrations of C5a and sC5b-9 remained different between causative microorganisms (P = 0.006 and P = 0.016 respectively). In pneumococcal meningitis high C5a and C5b-9 levels are associated with the occurrence of systemic complications, unfavorable outcome and death, whereas an inverse relationship between C5b-9 levels and mortality is observed in meningococcal meningitis.
Conclusions: Our study shows striking variations in complement activation depending on the pathogen responsible for the bacterial meningitis. In pneumococcal meningitis, high CSF complement levels were a strong indicator of disease severity and mortality, however in meningococcal meningitis, an inverse relationship between sC5b-9 and mortality was observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinf.2013.12.016 | DOI Listing |
Vaccine
January 2025
Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Canada. Electronic address:
Neisseria gonorrhoeae, which causes the sexually transmitted infection gonorrhea and Neisseria meningitidis, a leading cause of bacterial meningitis and septicemia, are closely related human-restricted pathogens that inhabit distinct primary mucosal niches. While successful vaccines against invasive meningococcal disease have been available for decades, the rapid rise in antibiotic resistance has led to an urgent need to develop an effective gonococcal vaccine. Several surface antigens are shared among these two pathogens, making cross-species protection an exciting prospect.
View Article and Find Full Text PDFLeg Med (Tokyo)
February 2025
University of Modena and Reggio Emilia, Italy. Electronic address:
Waterhouse-Friderichsen Syndrome (WFS) is a rare but life-threatening condition characterized by massive adrenal hemorrhage. WFS represents one of the features of the Overwhelming Post-Splenectomy Infection, which occurs any time after spleen removal and is recognized as the most serious complication in asplenic patients. We report a fatal case of WFS resulting from Streptococcus pneumoniae infection in a vaccinated and splenectomized patient.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Laboratory of Proteolytic Enzyme Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.
View Article and Find Full Text PDFPLoS One
January 2025
School of Mathematics, Manchester University, Manchester, United Kingdom.
The genus Neisseria includes two major human pathogens: N. meningitidis causing bacterial meningitis/septicemia and N. gonorrhoeae causing gonorrhoea.
View Article and Find Full Text PDFSci Rep
December 2024
Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire.
The respiratory tract harbours microorganisms of the normal host microbiota which are also capable of causing invasive disease. Among these, Neisseria meningitidis a commensal bacterium of the oropharynx can cause meningitis, a disease with epidemic potential. The oral microbiome plays a crucial role in maintaining respiratory health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!