Successful reduction of off-target hERG toxicity by structural modification of a T-type calcium channel blocker.

Bioorg Med Chem Lett

Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon, Gyeonggi-do 420-743, Republic of Korea. Electronic address:

Published: February 2014

To obtain an optimized T-type calcium channel blocker with reduced off-target hERG toxicity, we modified the structure of the original compound by introducing a zwitterion and reducing the basicity of the nitrogen. Among the structurally modified compounds we designed, compounds 5 and 6, which incorporate amides in place of the original compound's amines, most appreciably alleviated hERG toxicity while maintaining T-type calcium channel blocking activity. Notably, the benzimidazole amide 5 selectively blocked T-type calcium channels without inhibiting hERG (hERG/T-type⩾220) and L-type channels (L-type/T-type=96), and exhibited an excellent pharmacokinetic profile in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.12.078DOI Listing

Publication Analysis

Top Keywords

t-type calcium
16
herg toxicity
12
calcium channel
12
off-target herg
8
channel blocker
8
successful reduction
4
reduction off-target
4
herg
4
toxicity structural
4
structural modification
4

Similar Publications

The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.

View Article and Find Full Text PDF

Ca3.3 T-type Calcium Channels Contribute to Carboplatin Resistance in Retinoblastoma.

J Biol Chem

January 2025

Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Carboplatin resistance in retinoblastoma, an aggressive pediatric intraocular tumor, remains a major clinical challenge in treatment. This study elucidates the role of T-type calcium channels in carboplatin resistance using human retinoblastoma Y79 cells. We generated carboplatin-resistant Y79 (Y79CR) cells and characterized their electrophysiological properties.

View Article and Find Full Text PDF

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!