A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of different spectral transmittances through tinted animal cages on circadian metabolism and physiology in Sprague-Dawley rats. | LitMetric

The suprachiasmatic nucleus is synchronized by the light:dark cycle and is the master biologic clock that serves as a pacemaker to regulate circadian rhythms. We explored the hypothesis that spectral transmittance (tint) of light through caging alters circadian rhythms of endocrine and metabolic plasma constituents in nonpigmented Sprague-Dawley rats. Rats (Crl:SD; n = 12 per group) were housed in a 12:12-h light:dark environment (300 lx; 123.0 μ W/cm(2); lights on, 0600) in either clear-, amber-, blue-, or red-tinted rodent cages. Blood was collected at 0400, 0800, 1200, 1600, 2000, and 2400 and measured for melatonin, total fatty acids, pH, glucose, lactic acid, corticosterone, insulin, and leptin. As expected, plasma melatonin levels were low during the light phase but higher during the dark phase in all groups; however, when compared with the clear-cage group, rats in amber-, blue-, and red-tinted cages had 29%, 74%, and 48%, respectively, greater total daily melatonin levels due to an increased duration and, in some cases, amplitude of the nocturnal melatonin signal. No differences were found in dietary and water intake, body growth rates, total fatty acids, pH, or glucose among groups. Disruptions in circadian rhythms, manifesting as alterations in phase timing, amplitude, or duration, occurred in the melatonin, lactic acid, corticosterone, insulin, and leptin levels of rats in tinted compared with clear cages. Therefore, the use of variously tinted animal cages significantly alters circadian rhythms in plasma measures of metabolism and physiology in laboratory rats, thus potentially altering the outcomes of scientific investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894647PMC

Publication Analysis

Top Keywords

circadian rhythms
16
tinted animal
8
animal cages
8
metabolism physiology
8
sprague-dawley rats
8
alters circadian
8
amber- blue-
8
blue- red-tinted
8
total fatty
8
fatty acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!