Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this review, we presume that the process of thrombus formation, as assessed in whole blood flow studies and in experimental (murine) thrombosis studies, reflects the platelet responses in human haemostasis and thrombosis. Following this concept, we give an up-to-date overview of the main platelet receptors and signalling pathways that contribute to thrombus formation and are used as targets in (pre)clinical intervention studies to prevent cardiovascular disease. Discussed are receptors for thrombin, thromboxane, ADP, ATP, prostaglandins, von Willebrand factor, collagen, CLEC-2 ligand, fibrinogen and laminin. Sketched are the consequences of receptor deficiency or blockage for haemostasis and thrombosis in mouse and man. Recording of bleeding due to (congenital) platelet dysfunction or (acquired) antiplatelet treatment occurs according to different protocols, while common laboratory methods are used to determine platelet function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.blre.2013.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!