Background: Oral and oropharyngeal squamous cell carcinomas (OSCC) are among the most common cancers. The poor survival rate among oral cancer patients can be attributed to several factors, one of them being lack of early detection. A key approach to this problem would be to detect potentially malignant lesion at their early stage. Using the FISH technique, oral brush cytology slides can be an easy and rapid screening approach for malignant cell detection. The present study was designed to detect hTERC and SOX2 amplifications in OSSC exfoliative tumor cells and evaluate whether those two gene amplifications might serve as a supportive biomarker in early detection and diagnosis of oral and oropharyngeal SCC.
Results: Brush biopsies were collected from exophytic and exulcerated oral and oropharyngeal lesions of the oral cavity of 71 patients and 22 healthy controls. FISH techniques using a TERC-specific DNA probe and a SOX2 DNA specific probe both combined with a centromere 3-specific control probe was performed on the cytology slides. A 100 squamous epithelial cell nuclei of the smears per slide were analysed. As abnormal FISH pattern were considered amplified and polyploid patterns.From 71 brush biopsies of oropharynx and other locations in oral cavity analysed by FISH 49 were considered to be abnormal (69%). The over representation of polyploidy and/or TERC/SOX2 amplification in tumour samples was statistically significant when compared to controls (p = 0.01).
Conclusion: SOX2 and TERC gene amplifications are common in all squamous cell carcinomas and their detection in early stages could be crucial for early detection and more accurate prognosis. Our study strongly suggests that early detection by FISH on cytobrushed samples could be a possible non-invasive screening method even before a tissue biopsy is performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900261 | PMC |
http://dx.doi.org/10.1186/1755-8166-7-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!