We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4834835 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine.
The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.
View Article and Find Full Text PDFHeliyon
December 2024
Curia Wisconsin, Inc. D/B/A Siegfried Acceleration Hub, 870 Badger Circle, Grafton, WI, 53024, United States.
Primary and secondary alkyl iodides and primary alkyl bromides were quickly and conveniently converted into their corresponding alkyl chlorides via S2 halide-halide substitution. The resultant alkyl chlorides simultaneously demonstrated increased volatility and stability paired with standard headspace GC-FID methodology. The derivatization was performed on both standard and sample alike and occurred during the headspace oven equilibration phase, eliminating the extra reaction step traditionally performed during many derivatization analyses.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry and Biochemistry Lamar University, 4400 MLK Blvd Beaumont Texas 77710 USA.
The mercury(II) halide complex [1,3-di--butyl-2,4-bis-(-butyl-amino)-1,3,2λ,4λ-di-aza-diphosphetidine-2,4-diselone-κ ,']di-iodido-mercury(II),-di-methyl-formamide monosolvate, [HgI(CHNPSe)]·CHNO or ()HgI, , containing -[( BuNH)(Se)P(μ-N Bu)P(Se)(NH Bu)] () was synthesized and structurally characterized. The crystal structure of confirms the chelation of chalcogen donors to HgI with a natural bite angle of 112.95 (2)°.
View Article and Find Full Text PDFOrg Lett
December 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
NHC boryl radical mediated halogen atom transfer (XAT) is useful in organic synthesis. Yet, most of the reaction ends only with reducing the halogen to hydrogen, that is, the C-X to C-H. This is especially dominant for electron-deficient alkyl halides, where the formed electrophilic radical reacts rapidly with NHC boranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!