Piezoresistance in polymer nanocomposites with high aspect ratio particles.

ACS Appl Mater Interfaces

Structures and Composite Materials Laboratory, Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.

Published: February 2014

In this paper, we address the problem of positive piezoresistance in high aspect ratio particle based polymer nanocomposites, a hybrid system at the center of research on flexible piezoresistive materials. We introduce a percolation theory based model relating the variation in electrical resistance to compressive strain and show that it gives accurate theoretical fits to experimental data presented in this paper, as well as to much of the available data in the literature. In contrast to existing theories, the model captures the characteristics of the particle network through experimentally definable parameters and does not rely on assumptions regarding the nature of the particles and/or the configuration of the network. It is further demonstrated that the presented theoretical framework is not limited to polymer nanocomposites with high aspect ratio particle but that it can explain piezoresistance in bulk electroconductive polymer nanocomposites in general. We find that the piezoresistive effect in such materials is rooted in a mechanical deformation induced change in the distribution of local conductances within the particle network, and we show that this change in the distribution of local conductances is well described by a strain dependent conductivity exponent, which scales with the magnitude of mechanical deformation. Besides, we demonstrate that these findings can be applied to the experimentally observed concentration dependence of the piezoresistance in polymer nanocomposites and, thus, to predicting the electric response to mechanical deformation at any particle concentration, which is expected to be highly instrumental in applied materials selection and performance evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am404808uDOI Listing

Publication Analysis

Top Keywords

polymer nanocomposites
20
high aspect
12
aspect ratio
12
mechanical deformation
12
piezoresistance polymer
8
nanocomposites high
8
ratio particle
8
piezoresistive materials
8
particle network
8
change distribution
8

Similar Publications

The target of this novel work is to assess the immunosuppression, genotoxicity, histopathological alterations, and cumulative mortality induced by acute toxicity of magnetite nanogel (MNG) in Nile catfish. Furthermore, a subsequent 10-day depuration period is adopted to estimate the restoration of those disturbed indices. Nile catfish (n = 180) were allotted into four groups and exposed to different concentrations of MNG (0, 1/10, 1/8, and 1/5 96-h LC).

View Article and Find Full Text PDF

MOF-derived intelligent arenobufagin nanocomposites with glucose metabolism inhibition for enhanced bioenergetic therapy and integrated photothermal-chemodynamic-chemotherapy.

J Nanobiotechnology

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

Bioenergetic therapy based on tumor glucose metabolism is emerging as a promising therapeutic modality. To overcome the poor bioavailability and toxicity of arenobufagin (ArBu), a MOF-derived intelligent nanosystem, ZIAMH, was designed to facilitate energy deprivation by simultaneous interventions of glycolysis, OXPHOS and TCA cycle. Herein, zeolitic imidazolate framework-8 was loaded with ArBu and indocyanine green, encapsulated within metal-phenolic networks for chemodynamic therapy and hyaluronic acid modification for tumor targeting.

View Article and Find Full Text PDF

Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications.

View Article and Find Full Text PDF

Functionalization of Graphene by Interfacial Engineering in Thermally Conductive Nanofibrillated Cellulose Films.

Langmuir

January 2025

Research Center of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai 200444, P. R. China.

Flexible nanocomposites incorporating nanofibrillated cellulose (NFC) hold significant promise for thermal management applications. However, their heat dissipation performance is primarily constrained by the interfacial thermal resistance (). In this work, 1-pyrenemethylamine hydrochloride (PyNH) noncovalent functionalized graphene subsequently self-assembled with NFC through a vacuum-assisted filtration technique.

View Article and Find Full Text PDF

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!