Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oil-in-water emulsions were formed and stabilized at low amphiphile concentrations by combining hydrophilic nanoparticles (NPs) (i.e., bare colloidal silica) with a weakly interacting zwitterionic surfactant, caprylamidopropyl betaine, to generate a high hydrophilic-lipophilic balance. The weak interaction of the NPs with surfactant was quantified with contact angle measurements. Emulsions were characterized by static light scattering to determine the droplet size distributions, optical photography to quantify phase separation due to creaming, and both optical and electron microscopy to determine emulsion microstructure. The NPs and surfactant acted synergistically to produce finer emulsions with a greater stability to coalescence relative to the behavior with either NPs or surfactant alone. As a consequence of the weak adsorption of the highly hydrophilic surfactant on the anionic NPs along with the high critical micelle concentration, an unusually large surfactant concentration was available to adsorb at the oil-water interface and lower the interfacial tension. The synergy for emulsion formation and stabilization for the two amphiphiles was even greater in the case of a high-salinity synthetic seawater aqueous phase. Here, higher NP adsorption at the oil-water interface was caused by electrostatic screening of interactions between (1) NPs and the anionic oil-water interface and (2) between the NPs. This greater adsorption as well as partial flocculation of the NPs provided a more efficient barrier to droplet coalescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la404132p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!