[Preparation and characteristic analysis of ractopamine molecularly imprinted polymers].

Guang Pu Xue Yu Guang Pu Fen Xi

School of Agriculture & Biology, Shanghai Jiaotong University, Shanghai Veterinary Bio-Tech Key Laboratory, Shanghai 200240, China.

Published: October 2013

A molecularly imprinted polymers (MIPs) of Ractopamine (RCT) was prepared by thermal polymerization method, and the adsorptive characters of the MIPs was investigated with ultraviolet spectrophotometric method. The results showed that RCT had the maximum absorbance value at the wavelength of 272 nm, the regression equation of RCT was y = 7.354 1x + 0.001 0, R2 = 0.999 9, and the average adsorption rate of MIPs was 83.4%. According to the adsorption kinetics, the adsorption time should be controlled within 10 minutes. Infrared spectrum analysis indicated that the MIPs was formed by hydrogen bonds between RCT and functional monomer methacrylic acid, the MIPs of RCT recognized RCT and combined with it exclusively via hydrogen bonds. The investigation is very useful and important for establishing RCT detection methods based on molecularly imprinted technology.

Download full-text PDF

Source

Publication Analysis

Top Keywords

molecularly imprinted
12
hydrogen bonds
8
rct
7
mips
5
[preparation characteristic
4
characteristic analysis
4
analysis ractopamine
4
ractopamine molecularly
4
imprinted polymers]
4
polymers] molecularly
4

Similar Publications

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine.

Biosens Bioelectron

December 2024

Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:

Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.

View Article and Find Full Text PDF

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

Fabrication of bio-mimic nanozyme based on Mxene@AuNPs and molecular imprinted poly(thionine) films for creatinine detection.

Biosens Bioelectron

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).

View Article and Find Full Text PDF

A molecularly imprinted fluorescent aptasensor was designed for selective detection of quinine (Qn) based on dual functional monomers. In the sol-gel polymerization of molecularly imprinted polymers (MIPs), 3-aminopropyltriethoxysilane (APTES) and quinine aptamer (Apt) were employed as dual functional monomers, and Qn was the template molecule. Near-infrared carbon dots (RCDs) were used as fluorescence signal probe, and effectively avoided the interference of fluorescence emitted by Qn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!