[Construction and evaluation of efficient gene expression platforms in Synechocystis sp. strain PCC6803].

Sheng Wu Gong Cheng Xue Bao

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China.

Published: September 2013

For metabolic engineering of cyanobacteria, there is an urgent need to construct a group of efficient heterologous gene expression platforms and to evaluate their expression efficiencies. Here we constructed three integrative vectors, the pKW1188-derived pFQ9F, pFQ9R and pFQ20, for integration of heterologous genes into the genome of the model cyanobacteria strain Synechocystis sp. strain PCC6803. The pFQ16, an RSF1010-derived broad host range shuttle vector, was constructed for conjugative transfer of genes to various cyanobacteria strains. All the four platforms constructed here applied the rbc (encodes Ribulose-1, 5-bisphosphate carboxylase/oxygenase) and the rbc terminator to promote and terminate the gene transcription. Besides, a "Shine-Dalgarno -AUG" fusion translation strategy was used to keep the high protein translation efficiency. Using lacZ as a reporter gene, the expression efficiency of pFQ20 was evaluated and showed a strong beta-galactosidase expression (109 Miller). Furthermore, the platform pFQ20 was used to express the E. coli tesA' gene and showed significant protein bands through the Western Blot test. The expression platforms constructed in this study offer useful molecular tools for metabolic engineering of cyanobacteria in the future.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gene expression
12
expression platforms
12
synechocystis strain
8
metabolic engineering
8
engineering cyanobacteria
8
platforms constructed
8
expression
6
gene
5
[construction evaluation
4
evaluation efficient
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!