Beyond perceptual expertise: revisiting the neural substrates of expert object recognition.

Front Hum Neurosci

Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health Bethesda, MD, USA.

Published: December 2013

Real-world expertise provides a valuable opportunity to understand how experience shapes human behavior and neural function. In the visual domain, the study of expert object recognition, such as in car enthusiasts or bird watchers, has produced a large, growing, and often-controversial literature. Here, we synthesize this literature, focusing primarily on results from functional brain imaging, and propose an interactive framework that incorporates the impact of high-level factors, such as attention and conceptual knowledge, in supporting expertise. This framework contrasts with the perceptual view of object expertise that has concentrated largely on stimulus-driven processing in visual cortex. One prominent version of this perceptual account has almost exclusively focused on the relation of expertise to face processing and, in terms of the neural substrates, has centered on face-selective cortical regions such as the Fusiform Face Area (FFA). We discuss the limitations of this face-centric approach as well as the more general perceptual view, and highlight that expert related activity is: (i) found throughout visual cortex, not just FFA, with a strong relationship between neural response and behavioral expertise even in the earliest stages of visual processing, (ii) found outside visual cortex in areas such as parietal and prefrontal cortices, and (iii) modulated by the attentional engagement of the observer suggesting that it is neither automatic nor driven solely by stimulus properties. These findings strongly support a framework in which object expertise emerges from extensive interactions within and between the visual system and other cognitive systems, resulting in widespread, distributed patterns of expertise-related activity across the entire cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873520PMC
http://dx.doi.org/10.3389/fnhum.2013.00885DOI Listing

Publication Analysis

Top Keywords

visual cortex
12
neural substrates
8
expert object
8
object recognition
8
perceptual view
8
object expertise
8
processing visual
8
expertise
6
visual
6
perceptual
4

Similar Publications

Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.

Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.

View Article and Find Full Text PDF

Microsaccade selectivity as discriminative feature for object decoding.

iScience

January 2025

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran.

Microsaccades, a form of fixational eye movements, help maintain visual stability during stationary observations. This study examines the modulation of microsaccadic rates by various stimulus categories in monkeys and humans during a passive viewing task. Stimulus sets were grouped into four primary categories: human, animal, natural, and man-made.

View Article and Find Full Text PDF

Retinotopic biases in contextual feedback signals to V1 for object and scene processing.

Curr Res Neurobiol

June 2025

Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, United Kingdom.

Identifying the objects embedded in natural scenes relies on recurrent processing between lower and higher visual areas. How is cortical feedback information related to objects and scenes organised in lower visual areas? The spatial organisation of cortical feedback converging in early visual cortex during object and scene processing could be retinotopically specific as it is coded in V1, or object centred as coded in higher areas, or both. Here, we characterise object and scene-related feedback information to V1.

View Article and Find Full Text PDF

Background: To investigate the alterations in spontaneous brain activity and the similarities and differences between monocular deprivation amblyopia and binocular deprivation amblyopia.

Methods: Twenty children with binocular deprivation amblyopia, 26 children with monocular deprivation amblyopia and 20 healthy controls underwent resting-state functional magnetic resonance imaging. The evaluation of altered spontaneous brain activity was conducted using fractional amplitude of low-frequency fluctuations (fALFF).

View Article and Find Full Text PDF

Cross-validating the electrophysiological markers of early face categorization.

eNeuro

January 2025

Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, 1700 Fribourg, Switzerland

Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!