In the present work, we combined vibrational spectroscopy with electronic structure calculations to understand the solvation of HMF in DMSO, water, and DMSO/water mixtures and to provide insights into the observed hindrance of HMF rehydration and aldol condensation reactions if it is dissolved in DMSO/water mixtures. To achieve this goal, the attenuated total reflection FTIR spectra of a wide composition range of binary and ternary mixtures were measured, analyzed, and compared to the findings of ab initio DFT calculations. The effect of solvent on the HMF C-O and O-H vibrational modes reveals significant differences that are ascribed to different intermolecular interactions between HMF and DMSO or water. We also found that DMSO binds to HMF more strongly than water, and interactions with the HMF hydroxyl group are stronger than those with the HMF carbonyl group. We also showed the preferential solvation of HMF C-O groups by DMSO if HMF is dissolved in DMSO/water mixed solvent. Frontier molecular orbital theory was used to examine the influence of the solvent on side reactions. The results show that HMF solvation by DMSO increases its LUMO energy, which reduces its susceptibility to nucleophilic attack and minimizes undesirable hydration and humin-formation reactions. This result, together with the preferential solvation of HMF by DMSO, provide an explanation for the enhanced HMF stability in DMSO/water mixtures observed experimentally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201300786 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
The aim of this study was to investigate the effects of ultrasound at two different frequencies, namely 30 kHz and 42 kHz, on various aspects of industrial Iranian honey, including its physical, biochemical, antioxidant and antimicrobial properties. Samples were subjected to ultrasound treatment at 30 kHz or 42 kHz for a duration of 1, 5 or 10 minutes at temperatures of 20 °C or 45 °C, respectively. The following parameters were then evaluated on days 1, 30, 90, and 180: HMF content, pH, acidity, proline concentration, total number of aerobic mesophilic bacteria, diastase activity, moisture content, sucrose concentration, fructose concentration, glucose concentration, fructose- glucose ratio, ABTS (antioxidant activity) content, number of osmophiles, phenol concentration, reducing sugar concentration and total sugar concentration.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia.
Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.
View Article and Find Full Text PDFChemSusChem
December 2024
Tongji University, Chemical Science and Engineering, 1239 Siping Road, 200092, Shanghai, CHINA.
Electrocatalytic biomass conversion using green electricity is regarded as an important strategy to meet the requirement of sustainable development. NiCo2O4 electrodes with different morphologies and electronic structures were fabricated by changing the precipitants used in the solvothermal process, and applied in the electrocatalytic 5-hydroxymethylfurfural oxidation (HMFOR). The experimental and theoretical calculation results showed NiCo2O4 nanosheets (NCO-Ns) with low Co/Ni ratio exhibited larger adsorption energy towards HMF and superior intrinsic catalytic activity in HMFOR, while NiCo2O4 nanoneedles (NCO-Nn) with larger electrochemical active surface areas presented faster electron transfer kinetics and enhanced catalytic performance for 50 mM HMF with a higher conversion rate (99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!