Well-ordered tilted silicon nanobelt arrays have been fabricated over a large area (≥2.5 cm(2)) by metal assisted chemical etching of pre-patterned silicon, which demonstrated markedly enhanced solar hydrogen evolution performance, compared with planar silicon of the same type and previously reported silicon nanowires prepared in a similar way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr05360a | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50014, United States.
Using an interatomic potential that can capture the tetrahedral configuration of water molecules (HO) in ice without the need to explicitly track the motion of the O and H atoms, coarse-grained (CG) atomistic simulations are performed here to characterize the structures, energy, cohesive strengths, and fracture resistance of the grain boundaries (GBs) in polycrystalline ice resulting from water freezing. Taking the symmetric tilt grain boundaries (STGBs) with a tilting axis of ⟨0001⟩ as an example, several main findings from our simulations are (i) the GB energy, , exhibits a strong dependence on the GB misorientation angle, θ. The classical Read-Shockley model only predicts the - θ relation reasonably well when θ < 20° or θ > 45° but fails when 20° < θ < 45°; (ii) two "valleys" appear in the -θ landscape.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
Investigating the molecular conformations of monoclonal antibodies (mAbs) adsorbed at the solid/liquid interface is crucial for understanding mAb solution stability and advancing the development of mAb-based biosensors. This study examines the pH-dependent conformational plasticity of a human IgG1k mAb, COE-3, at the SiO/water interface under varying pH conditions (pH 5.5 and 9).
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
Imaging at nanometre-scale resolution is indispensable for many scientific fields such as biology, chemistry, material science and nanotechnology. Scanning electron microscopes (SEM) are widely used as important tools for the nanometre-scale analysis of various samples. However, because of the vacuum inside the SEM, a typical analysis requires fixation of samples, a drying process, and staining with heavy metals.
View Article and Find Full Text PDFRecently, nanoimprinting has attracted a new round of attention in the industry due to the boom in demand for augmented reality/virtual reality (AR/VR), metalens and microlens, and even semiconductors. Slanted gratings have great application prospects in AR/VR displays because of their high efficiency in light coupling. UV-Nanoimprint lithography (UV-NIL) has been identified as one of the most feasible routes for mass manufacture of high refractive index (RI) slanted gratings.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
CONICET-Universidad Nacional de Luján, Instituto de Ecología y Desarrollo Sustentable (INEDES), Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Av. Constitución y Ruta 5, Luján, 6700 Buenos Aires, Argentina.
Molecular dynamics simulations were performed to investigate the structural and energetic features related to the direct binding of a short interfering RNA (siRNA) molecule on a silica nanoparticle functionalized with 3-aminopropyltriethoxysilane (APTES) groups, immersed in a sodium chloride aqueous solution at physiological concentration. Three different grafting densities of APTES were evaluated, namely, 2.7, 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!