A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. | LitMetric

FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils.

Circ Res

From the Laboratory of Clinical Chemistry and Haematology (C.T., H.F.H., R.T.U., C.M., P.G.d.G., M.R.), Laboratory of Experimental Cardiology (C.T., G.P., I.E.H.), and Cell Microscopy Center, Department of Cell Biology (H.F.H.), UMC Utrecht, Utrecht, The Netherlands; UMR-S949 INSERM, EFS-Alsace, Université de Strasbourg, Strasbourg, France (A.E., C.G.); Department of Clinical Chemistry, AMC Amsterdam, Amsterdam, The Netherlands (R.N.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (R.W.F.).

Published: February 2014

AI Article Synopsis

  • Platelets play a crucial role in preventing blood loss after injury and regulating inflammation by interacting with leukocytes and endothelial cells.
  • This study explores how platelets form long membrane extensions, called FLIPRs, under flow conditions, which can enhance their procoagulant and proinflammatory actions.
  • The research demonstrates that FLIPRs are formed in both lab settings and a live mouse model, contributing to increased interaction with immune cells, leading to their activation and the generation of microparticles that promote inflammation.

Article Abstract

Rationale: Platelets are the most important cells in the primary prevention of blood loss after injury. In addition, platelets are at the interface between circulating leukocytes and the (sub)endothelium regulating inflammatory responses.

Objective: Our aim was to study the dynamic process that leads to the formation of procoagulant and proinflammatory platelets under physiological flow.

Methods And Results: In the present study, we describe the formation of extremely long, negatively charged membrane strands that emerge from platelets adhered under flow. These flow-induced protrusions (FLIPRs) are formed in vitro on different physiological substrates and are also detected in vivo in a mouse carotid injury model. FLIPRs are formed downstream the adherent and activated platelets and reach lengths of 250 μm. FLIPR formation is shear-dependent and requires cyclophilin D, calpain, and Rac1 activation. It is accompanied by a disassembly of the F-actin and microtubule organization. Monocytes and neutrophils roll over FLIPRs in a P-selectin/P-selectin glycoprotein ligand-1-dependent manner, retrieving fragments of FLIPRs as microparticles on their surface. Consequently, monocytes and neutrophils become activated, as demonstrated by increased CD11b expression and L-selectin shedding.

Conclusions: The formation of long platelet membrane extensions, such as the ones presented in our flow model, may pave the way to generate an increased membrane surface for interaction with monocytes and neutrophils. Our study provides a mechanistic model for platelet membrane transfer and the generation of monocyte/neutrophil-microparticle complexes. We propose that the formation of FLIPRs in vivo contributes to the well-established proinflammatory function of platelets and platelet-derived microparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.114.302361DOI Listing

Publication Analysis

Top Keywords

monocytes neutrophils
16
flow-induced protrusions
8
protrusions fliprs
8
fliprs formed
8
platelet membrane
8
fliprs
6
platelets
6
formation
5
fliprs platelet-derived
4
platelet-derived platform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!